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Abstract. Let H be a Hopf algebra over the field k which is a finite module
over a central affine sub-Hopf algebra R. Examples include enveloping
algebras U (g) of finite dimensional k-Lie algebras g in positive characteristic
and quantised enveloping algebras and quantised function algebras at roots
of unity. The ramification behaviour of the maximal ideals of Z(H) with
respect to the subalgebra R is studied, and the conclusions are then applied to
the cases of classical and quantised enveloping algebras. In the case of U (g)
for g semisimple a conjecture of Humphreys [28] on the block structure of
U (g) is confirmed. In the case of Uc(g) for g semisimple and € an odd root of
unity we obtain a quantum analogue of a result of Mirkovi¢ and Rumynin,
[35], and we fully describe the factor algebras lying over the regular sheet,
[9]. The blocks of U, (g) are determined, and a necessary condition (which
may also be sufficient) for a baby Verma U,(g)-module to be simple is
obtained.

1. Introduction

1.1.  Throughout k£ will denote an algebraically closed field. Inrecent years
common themes have become increasingly apparent in the representation
theory of three important classes of k-algebras: the enveloping algebras
U (g) of semisimple Lie algebras g in positive characteristic, the quantised

We are very grateful to J. Jantzen, L. Lebruyn, R. Marsh, A. Premet and G. Rohrle for
advice, discussions and information. This research was begun while the second author was
studying for a Ph.D. at the University of Glasgow, with the support of an EPSRC Research
Studentship. The research of the first author was partially supported by NATO Grant CRG
960250
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enveloping algebras U(g) of semisimple Lie algebras at a root of unity €,
and the quantised function algebras O¢[G] of semisimple groups G at a root
of unity e, [30,14,13]. The common structure underlying these (and other
related) classes is that of a triple

RCZCH (1)

of k-algebras, where H is a Hopf algebra with centre Z, Z being an affine
domain, and R is a sub-Hopf algebra of H, contained in Z, over which H
(and hence Z) are finite modules. The common strategy adopted in studying
the (finite dimensional) representation theory of such an algebra is to study
the finite dimensional k-algebras H/mH, as m ranges across the maximal
ideal spectrum of R.

1.2. In this paper we continue the approach proposed and adopted in [3],
[4] of looking for general results in the above setting which can then be in-
terpreted and applied in the specific contexts mentioned above. Our starting
point here is the following. Given a maximal ideal m of R, how does the ram-
ification behaviour of the maximal ideals of Z lying over m interact with the
representation theory of H/mH? And how does this ramification behaviour
vary as m varies through Maxspec(R)? We discuss these questions first in
the abstract setting of a triple (1) in Sect. 2, and then consider classical and
quantised enveloping algebras in Sects. 3 and 4 respectively. (An analogous
discussion for O,[G], where more precise results can currently be proved
than in the first two classes, is given in the sequel [5] to the present paper.)

1.3. In Sect. 2, having first noted the easy fact that, in the setting (1),
the unramified locus of Maxspec(Z) is contained in the smooth locus, we
go on in Theorem 2.5 to give a characterisation of an unramified point
of Maxspec(Z) under hypotheses which are satisfied in each of the three
settings mentioned above. Thus, it is the main result of [4] that the smooth
locus of Maxspec(Z) coincides with the Azumaya locus of H for each of
the three classes listed in (1.1); see Theorem 2.6. (The Azumaya locus of
H consists of those maximal ideals M of Z for which H/MH is simple
(artinian).) Theorem 2.5 connects ramification with representation theory:
it states that when the smooth locus of Z coincides with the Azumaya locus a
maximal ideal M of Z is unramified over m = RN M if and only if M is an
Azumaya point and H/M H is a projective H /mH-module. Define a fully
Azumaya point m of R to be a maximal ideal m of R such that all the maximal
ideals of Z which lie over m are in the Azumaya locus. Then we shall also
be concerned to identify the fully Azumaya points m of Maxspec(R), and
to describe the corresponding factors H/mH.

The second theme of Sect. 2 is the problem of describing the blocks of
H/mH, for a maximal ideal m of R. We point out in Proposition 2.7 that a
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Abstract

‘We show how the existence of a PBW-basis and a large enough central subalgebra can be used to de-
duce that an algebra is Frobenius. We apply this to rational Cherednik algebras, Hecke algebras, quantised
universal enveloping algebras, quantum Borels and quantised function algebras. In particular, we give a
positive answer to [R. Rouquier, Representations of rational Cherednik algebras, in: Infinite-Dimensional
Aspects of ion Theory and Applicati Amer. Math. Soc., 2005, pp. 103-131] stating that the
restricted rational Cherednik algebra at the value ¢ = 0 is symmetric.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Frobenius algebras; Calabi-Yau algebras; Quantum groups; Hecke algebras; Rational Cherednik algebras

1. Introduction

1.1. In this note we will consider six types of algebras:

(I) the rational Cherednik algebra Ho . associated to the complex reflection group W;
(I) the graded (or degenerate) Hecke algebra Hg, iated to a p l group W;
(IT) the extended affine Hecke algebra H associated to a finite Weyl group W;

* Corresponding author.
E-mail addresses: kab@maths.gla.ac.uk (K.A. Brown), igordon@maths.ed.ac.uk (LG. Gordon),
cs@maths.gla.ac.uk (C.H. Stroppel).

0021-8693/$ — see front matter © 2007 Elsevier Inc. All rights reserved.
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(IV) the quantised enveloping algebra U (g), at an £th root of unity €, of a semisimple complex
Lie algebra g;

(V) the corresponding quantum Borel U (g

(VI) the corresponding quantised function algebra O[G].

)?0

These algebras share two important properties: first, they have a regular central subalgebra
Z over which they are free of finite rank, second, they—or a closely associated algebra in
case (VI)—have a basis of PBW type. The purpose of this paper is to show that these two prop-
erties are the key tools for defining an associative non-degenerate Z-bilinear form for each of
these algebras, and hence for deducing Frobenius and Calabi—Yau properties for the algebras in
each class.

1.2.  We prove that each pair Z C R in the classes (I)«(V]) is a free Frobenius extension.
The definition and basic properties are recalled in Section 2.1 and Section 2.2—in essence, one
requires Homz (R, Z) = R as (Z-R)-bimodules.

1.3. When an algebra R is a free Frobenius extension of a central subalgebra Z then
Homz(R, 2) is in fact isomorphic to R both as a left and as a right R-module, but not nec-
essarily as a bimodule. However, there is a Z-algebra automorphism v of R, the Nakayama
automorphism, such that Homz(R, 2) = IRV as R-bimodules. This automorphism is unique
up to an inner automorphism. We explicitly determine the Nakayama automorphisms for each
case listed above: v is trivial (i.e. inner) in cases (I) and (IV); non-trivial in cases (II), (III) and (V)
and (VI).

1.4. The results summarised in Section 1.2 have i di
Calabi-Yau property of the algebras in classes (I)-(VI). The deﬁm(mn and its relevance to
Serre duality are recalled in Section 2.4. In particular [8], we get natural examples of so-called
Frobenius functors—that is, functors which have a biadjoint. Frobenius algebras and Frobenius
extensions play an important role in many different areas (see for example [23]). They give rise
to Frobenius functors which are the natural candidates for constructing interesting topological
quantum field theories in dimension 2 and even 3 (see for example [37]), and also provide con-
nections between representation theory and knot theory (for example in the spirit of [22]).

1.5. Letus assume for the moment that Z C R is a free Frobenius extension with Nakayama
automorphism v. If 1 is an ideal of Z, then it is clear from the definitions that Z/I C R/IR isa
free Frobenius extension with Nakayama automorphism induced by v. This applies in particular
when / is a maximal ideal m of Z; since, for R in classes (I)—(Vl) every simple R-module is
killed by such an ideal m, this is relevant to the finite-di 1 rep ion theory of R.
Thus R/mR is a Frobenius algebra, which is symmetric provided the automorphism of R/mR
induced by v is inner.

1.6. To define the non-degenerate associative bilinear forms mentioned in Section 1.1, we
follow in each case the approach of [12, Proposition 1.2] to the study of the inclusion Z € R
when R is the enveloping algebra U(g) of a finite-dimensional restricted Lie algebra g over a
field k of characteristic p > 0, and Z is the Hopf centre k(x” — x!P): x € g). In the language of
the present paper, it is proved there that Z C U(g) is a free Frob ion, with } y
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Transfer results for Frobenius extensions
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ARTICLE INFO ABSTRACT

c We study Frobeni ions which are free-filtered by a
ived 15 April 2018 totally ordered, finitely generated abelian group, and their
Avallable cnline 17 January 2019 free-graded counterparts. First we show that the Frobenius
SEeISA by Glays By property passes up from a free-graded extension to a free-
MEC? filtered extension, then also from a free-filtered extension
il to the extension of their Rees algebras. Our main theorem
16G99 states that, under some natural hypotheses, a free-filtered
extension of algebras is Frobenius if and only if the associated
Keywords: graded extension is Frobenius. In the final section we apply
Frobenius extensions this theorem to provide new examples and non-examples of
Deformation theory Frobenius extensions.
Associative algebras Crown Copyright © 2019 Published by Elsevier Inc. All
rights reserved.

1. Introduction

Throughout this paper k is a field and all algebras are k-algebras. A finite dimensional
algebra R is called a classical Frobenius algebra if the dual of the right regular module is
isomorphic to the left regular module (Rz)* = zR. Equivalently R admits a linear map
R — k whose kernel contains no left or right ideals — we call this the Frobenius form
of R. The representation theory of classical Frobenius algebras admits extremely nice

* Corresponding author.
E-mail addresses: S.Launois@kent.ac.uk (S. Launois), L.Topley@kent.ac.uk (L. Topley).

https://doi.org/10.1016/j.j; 1.2019.01.006
0021-8693/Crown Copyright © 2019 Published by Elsevier Inc. All rights reserved.
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duality properties. For instance, it is known that the projective and injective modules
coincide and, in particular, the left regular module is injective. Three notable families
of examples include the group algebras of finite groups, reduced enveloping algebras of
restricted Lie algebras and semidirect products R x R* where R is any Artinian ring [1,
pp- 127], [8, Proposition 1.2].

A natural generalisation of a classical Frobenius algebra is the notion of a Frobenius
extension (of the first kind), where k is replaced by some subring of R, not necessarily
central. More precisely we say that a ring extension S C R is a Frobenius extension
in case R is a projective left S-module and R = Homs(sR,sS) as R-S-bimodules.
Nakayama and Tsuzuku observed that Frobenius extensions can be characterised by the
existence of a S-S-bimodule homomorphism ® : R — S generalising the Frobenius form
of a classical Frobenius algebra [22], and in this paper we call this map the Frobenius form
of the extension. Frobenius extensions play an important role in a diverse array of topics,
such as link invariants and 2-dimensional TQFT, as well as having many applications in
the representation theory of Hopf algebras (see [13] for a survey). The examples which we
will be interested in are quantum groups which are free of finite type over their centre,
as well as some important new families arising in modular representation theory. For
this reason we focus on Frobenius extensions S C R where S is a subalgebra of the
centre of R. It seems plausible that some of our results could be extended to weaken this
hypothesis.

Brown-Gordon-Stroppel gave many new examples of Frobenius extensions [3]. Their
approach was fairly uniform: in each case they gave an example of a Frobenius form
®: R — S and checked the defining property via a single simple hypothesis. In [3, 1.6]
they asked whether there exists an axiomatic approach which would apply to all of their
examples simultaneously, and it was this question which provided the first motivation
for our work. One feature shared by many of their examples, as well as other classical
examples, is a filtration by a totally ordered finitely generated abelian group G, and in
this paper we develop general tools which might help to prove the Frobenius property in
the presence of such a filtration. For the rest of the introduction we fix such a group G
and we use the words graded and filtered to mean G-graded and G-filtered.

When dealing with filtrations and gradings it is natural to require that the module
structures carry filtrations which are compatible with the actions: such modules are
known as free-filtered and free-graded modules respectively (see §2.4 for an introduction).

Free filtered and free-graded ring extensions are defined in the obvious manner. When R
is a filtered algebra we write gr R := @ c;(Rg/ 345 ne Rn) for the associated graded
algebra.

Now suppose that S C R is a central extension. We say that S C R is a free-graded
Frobenius extension if S C R is a free-graded extension equipped with a homogeneous
Frobenius form ® : R — S. Similarly we say that S C R is a free-filtered Frobenius

extension if S C R is a free-filtered ring extension and a Frobenius extension.
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Representations of Finite-Dimensional Hopf Algebras
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Let H denote a finite-dimensional Hopf algebra with antipode S over a field k.
We give a new proof of the fact, due to Oberst and Schneider [ Manuscripta Math. 8
(1973), 217-241], that H is a symmetric algebra if and only if H is unimodular and
S? is inner. If H is involutory and not semisimple, then the dimensions of all

rojective H-modules are shown to be divisible by char [ . In the case where k is a
splitting field for H, we give a formula for the rank of the Cartan matrix of H,
reduced modchar k, in terms of an integral for H. Explicit computations of the
Cartan matrix, the ring structure of Gy(H), and the structure of the principal
indecomposable modules are carried out for certain specific Hopf algebras, in
particular for the restricted enveloping algebras of completely solvable p-Lie
algebras and of s/(2,).  © 1997 Academic Press
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PROJECTIVE MODULES OVER FROBENIUS ALGEBRAS
AND HOPF COMODULE ALGEBRAS

Martin Lorenz' and Loretta Fitzgerald Tokoly?

| Department of Mathematics, Temple University, Philadelphia,
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This note presents some results on projective modules and the Grothendieck groups K,
and G for Frobenius algebras and for certain Hopf Galois extensions. Our principal
technical tools are the Higman trace for Frobenius algebras and a product formula for
Hattori-Stallings ranks of projectives over Hopf Galois extensions.



The& [ &‘\«oww: ig N o ( QQnCLc ~0L‘mm?ovu(> /%}oécm\w a(gzxgro\ Ores f@"( I
LTk o I ha

P'mﬂﬁ 0% Ihee Coslon mebac C 4 A — cank

A/Zr(_) 2 A=A i the %///ﬂvvwz Mmap : Z’(x)f ZSEXHL‘) ‘-\)Ler—t {825 xndl gﬁ;bf
/S Cu [?a('f d/g OQMO( éaxr v{ J\ LQ"WLL fﬁ-ﬂbﬂ_oo( 4o él& ﬁoén/m S‘éft«oﬁw-q,

Proyectie clats sroup . Grothundiiech group
m fP 2
K, (M) K - 6N e K
. . e \[zs}t(ca(- MAPT Gre
oot Sy | o o | ek ot e

Tan (A A [Aq( v K

N(/¥Y . (M) sl o
Z"S'\U;lf:«l:ilh‘] oC | > <LP—>TFA/K<Z_}1 07{,\))
C&M“l’&k B T Gl /rigld il fplicafion

ok 4 Ui map = rank o ©



M w& O(D (\oJ— LV'\OU m”lz 7,_) a (’f\‘OF"‘

(/\)\/\G‘Ll We \f\alfa proven : (X A Grises J§~ro,/vz O (%LoLmO szl»hy\a H\eﬂ

(‘anhf’: num&r 0’{— lDLDc_’ZI GX( JXV
So
V,‘—M}i J{ = numbe ok blocks J( -

St We assume %Lc,j— A‘é p'ran\rz 62( @_G_QL bloch madnx C /e (on - 20, ;{A,f
imyLA'ec Pt eadl. C; s G{ Pfranlq one_



#@e are v idecs \f\aw L Pfolécﬂ *Hfmls (‘an\zf): numée,r o/?( La(or_(z& s& 7&

S(V\ca QC_& iS Ce ??Oéanfuf/ We_ clxo l/\Ql/e_ c #}amqn Mmep ’[:H»—> #‘

IK

The Q“JVD’“WV’L‘KW o =l induces an aulromorpzmw o A=A vua(uh(; A o Frobuus alsebse. over R,

{ 0 Aok ks the Kignan rap dhon the diogreanm

> A

Cotmu écs‘



/% [s o %WCS‘@L QQLL HAGL “/‘ﬁ ;‘/"034 @Q T s co/m[@c'wzi /n Aﬂ(_ AJQ[Z%%OLMC( Cenkes

27_04= {\/\(«—:H' ( ‘I\o\zo(Gk)L] Lr O.U ae'l'(i
oJl i PW\\'S is o Z-medule.

gim[tar(a/ é\m /'rwacgm efQ T s cwéa{ﬂe;i In %Ml. H’ B Jr\rm C,ZQ_::.F éLaé

C,meu{ms.



Z/QL Z rQSQ ) Le. Jf\“c wGge 0% Z regp- 0(, n A= 444
C(QCL(‘(%) 2 /S Colnéﬂm\ai 74‘# Ct-méf‘ Mf Ar Au(— /YZ ey no% éc A\L L:JI/\Bé_ antéf‘.
WVorethleg, 2 codois all te block iiclompotiate ol A Ly Ml Eheoren (1)

K/\B@/ \/\CVL &\ADWV\ ]Q\Aa'!: : wses \—L pn’ma, Z ;'\lei-’.‘u'ﬁ c(o;tp{/ A\ /{_R fV\vu‘/ﬁ(c_
+ o regulk L’El Brawn (2607

/(> Z and 2 are direct Supmands sg B a5 2-mooules ¥
=> A\L ncéura( tmepS % 7 —">Z] W& g(’(/,wz DL—"> 204) Qe iSovuory\A}avag
ules \-\.‘J Q i< v ac
_ s w
2) 2" is Frobenivs (ons K=Rf,)

uses £, Gorenshin
%) Z:c Is o KWQ Z)~m&u(¢ crg ranh om,_/

L‘L> \‘M (_/ C SOC’&/ Zoc



S‘MCE/ A Sﬁ)u{ e l/<) s ‘AJDC/S ZI = sz( Si?‘ﬂ(’@ 2)'—04901«1[& s OV\L”DKAI/‘“CV]S'rOAaL oves X

/"é-V\Cc
(majrh S &\i’&‘ Mlles
2) A
Aim I/(L O(Am/( SOC/, o< = g(&?c . OJ() KCQ@LZ’ \BLC?—()(’—“\%L[AH
On E\\L OQVlU \(WCmcLJ
Lz,mrﬂakagﬂdr\vua p-Gak ok eesy bodh o] C now—zes.

A
JJWK\W\I’\; P—rcmﬁm o& C = [ 8UM|

g’o ) LD&L\AY\U We. \'\m@
dim, Imz" = | 2L



