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The key picture

The following picture illustrates how Andersen, Stroppel, and
Tubbenhauer constructed their cellular bases:
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ĝ

πλ

T : a tilting module for a quantum group Uq

T(λ): the indecomposable tilting Uq-module at λ

∆(λ) and ∇(λ): the standard and costandard modules at λ



What we proved

We extended the AST construction from tilting modules for quantum
groups to a general categorical setting.

Let C be a standard category (e.g. a highest weight category with
finitely many simples).

Theorem
For any tilting object T ∈ C one can construct a standard basis on the
algebra EndC(T) as in the picture.

Theorem
If C is equipped with a standard duality D, then the construction can
be done in such a way that the resulting basis is cellular with respect
to the anti-involution on EndC(T) induced by D. In particular, EndC(T)
is a cellular algebra.



Implications

Theorem
The Hecke algebra associated to a complex reflection group (à la
Broué, Malle, and Rouquier) admits a natural standard basis. For a
finite Coxeter group, there is a cellular basis.

In particular, this reproves (over the complex numbers only, but not
assuming Lusztig’s P1–P15): Geck, M. (2007). Hecke algebras of finite
type are cellular. Invent. Math., 169(3), 501–517.

Fundamental question about the nature of cellular algebras
Is every cellular algebra the endomorphism algebra of a tilting
object?

This may finally shed a categorical light on cellularity.



Cellular algebras



Standard bases (à la Du–Rui)

Throughout: E is a finite-dimensional algebra over a field K .

Definition
A standard basis of E is a K-basis B of E which is fibered over a
poset Λ, i.e., B =

∐
λ∈Λ Bλ, together with indexing sets Iλ and J λ for

any λ ∈ Λ such that
Bλ = {cλij | (i, j) ∈ Iλ × J λ} ,

and for any ϕ ∈ E and cλij ∈ Bλ we have

ϕ · cλij ≡
∑
k∈Iλ

rλk (ϕ, i)cλkj mod E<λ ,

cλij · ϕ ≡
∑
l∈J λ

rλl (j, ϕ)cλil mod E<λ ,

where rλk (ϕ, i), rλl (j, ϕ) ∈ K are independent of j and i, respectively.
Here, E<λ is the subspace of E spanned by the set

⋃
µ<λ Bµ.



Cellular bases (à la Graham–Lehrer)

Definition
A cellular basis of E is a standard basis B together with an algebra
anti-involution ι on E such that Iλ = J λ for all λ ∈ Λ and

ι(cλij ) = cλji
for all (i, j) ∈ Iλ × J λ.

Remarks

1. A standard/cellular basis is a structure on E.
2. While admitting a cellular basis is a restrictive property on
algebras (e.g. the Cartan determinant must be positive),
admitting a standard basis is not (Koenig–Xi).

3. Nonetheless, a standard basis leads to Specht modules
W(λ) := K · {aλi | i ∈ Iλ} , ϕ · aλi :=

∑
k∈Iλ

rλk (ϕ, i)aλk ,

and they may involve interesting combinatorics.



Examples of cellular algebras

1. Matrix algebras: ι = −t, Λ := {?}, I? := J ? := {1, . . . ,n}, c?ij := Eij:
EklEij = δliEkj .

2. Group algebra of a symmetric group, Hecke algebras of type A
3. Temperley–Lieb algebras, Brauer algebras
4. . . .

Observation (Andersen–Stroppel–Tubbenhauer)
All these examples arise as EndUq-mod(T) for a tilting module T and
Uq a quantum group.

Their construction usually yields different cellular bases than the
usual ones though (the unit 1 is not a basis element).



Problems of generalizing the AST construction

The AST construction should basically work for tilting objects in any
highest weight category. But there are some subtleties:

1. The proof relies on weight space decomposition of Uq-modules.
2. Tilting modules need to behave as in Ringel’s theory.
3. The construction also works with Uq-mod in positive
characteristic: not enough injectives, hence not highest weight.

4. Where does the involution come from? Likely from a duality on
the category. But an arbitrary duality does not necessarily
induce an involution on the endomorphism algebra!



Standard categories



Abelian + ordered simple objects

We require categories with standard, costandard, and tilting objects
behaving in the desired way.

We came up with the concept of standard categories.

(SC1) C is an essentially small and locally finite abelian category over
a field K .

(Locally finite: all objects are of finite length and all Hom-spaces are
finite-dimensional.)

(SC2) There is a complete set {L(λ)}λ∈Λ of representatives of
isomorphism classes of simple objects of C indexed by a set Λ
equipped with a partial order ≤.



Standard and costandard objects

Definition
A costandard object for L(λ) is an object ∇(λ) such that
Soc∇(λ) ' L(λ) and all composition factors L(µ) of ∇(λ)/ Soc∇(λ)

satisfy µ < λ.

A standard object for L(λ) is an object ∆(λ) such that Hd∆(λ) ' L(λ)
and all composition factors L(µ) of Rad∆(λ) satisfy µ < λ.

(SC3) Each L(λ) has a costandard object ∇(λ) and a standard object
∆(λ) such that the following condition holds for all λ, µ ∈ Λ and
0 ≤ i ≤ 2:

ExtiC(∆(λ),∇(µ)) =

{
K if i = 0 and λ = µ ,

0 else .

(We do not need to have enough injectives for this! The Ext-groups
are isomorphic to the ones in the Ind-completion of C, and the latter
behave as usual.)



Tilting objects

Definition
An object T ∈ C is tilting if it admits both a filtration whose quotients
are standard objects and a filtration whose quotients are costandard
objects.

The category Ct of tilting objects is a Krull–Schmidt category.

(SC4) For any λ ∈ Λ there is an indecomposable object T(λ) ∈ Ct

such that:

1. if [T(λ) : L(µ)] 6= 0, then µ ≤ λ, and [T(λ) : L(λ)] = 1;
2. there is a monomorphism ∆(λ) ↪→ T(λ);
3. there is an epimorphism T(λ) � ∇(λ).

Moreover, the map λ 7→ T(λ) is a bijection between Λ and the set of
isomorphism classes of indecomposable tilting objects of C.

A standard category is a category satisfying SC1–SC4.



Examples

The following are examples of standard categories:

1. Highest weight categories with finitely many simple objects.
2. Lower finite highest weight categories à la Brundan–Stroppel,
e.g. Rep(G) for a connected reductive group G.

3. The Bernstein–Gelfand–Gelfand category O of a
finite-dimensional complex semisimple Lie algebra g.

4. The category Uq-mod of finite-dimensional type-1 modules for a
quantum group Uq associated to a finite-dimensional complex
semisimple Lie algebra g and q ∈ K (+some mild assumptions).

5. . . .



(Generalizing) the AST
construction



Inclusions and projections

Let C be a standard category.

For any λ ∈ Λ choose a non-zero morphism
cλ : ∆(λ) → ∇(λ) .

This is unique up to scalars by the Ext-assumption.

Choose an embedding
iλ : ∆(λ) ↪→ T(λ)

and a projection
πλ : T(λ) � ∇(λ)

such that
πλ ◦ iλ = cλ .



Lifts

Let T ∈ C be a tilting object.

Any morphism f : T → ∇(λ) has a lift f̂ : T → T(λ), i.e.

T T(λ)

∇(λ)

f̂

f πλ

commutes.

Similarly, any morphism g : ∆(λ) → T has a lift ĝ : T(λ) → T , i.e.

T(λ) T

∆(λ)

ĝ

iλ g

commutes.



Putting things together

Let Iλ
T := { 1, . . . (T : ∇(λ)) } and J λ

T := { 1, . . . , (T : ∆(λ)) }.

Choose a basis FλT = {fj | j ∈ J λ
T } of HomC(T,∇(λ)).

Choose lifts F̂λT := {f̂λj | j ∈ J λ
T } ⊆ HomC(T, T(λ)).

Choose a basis Gλ
T = {gλi | i ∈ Iλ

T of HomC(∆(λ), T).

Choose lifts Ĝλ
T := {ĝλi | i ∈ Iλ

T } ⊆ HomC(T(λ), T).

Let
cλij := ĝλi ◦ f̂λj ∈ EndC(T) .

We have
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Standard bases

Theorem (Bellamy–T.)
{cλij | i ∈ Iλ

T , j ∈ J λ
T } is a standard basis of ET := EndC(T).

The key problem is showing that {cλij } is a basis of ET .

This is where AST use restrictions ϕλ of ϕ ∈ ET to weight spaces Tλ of
T to obtain a filtration E≤λ

T of ET , which is then used to prove this.

We replaced:
ϕλ := [Imϕ : L(λ)] ∈ N

and
E≤λ
T := {ϕ ∈ ET | ϕµ = 0 unless µ ≤ λ} .

With this replacement, the proof of AST works verbatim (this is not
obvious, though).



Duality and cellularity



A problem

An involution on ET making a standard basis a cellular basis should
(philosophically) come from a duality D : C → C.

Let T ∈ C be a tilting object which is self-dual, i.e. there is
ΦT : D(T)

'−→ T .

Define a K-algebra anti-morphism α−1
T : ET → ET by

α−1
T (ϕ) := ΦT ◦ D(ϕ) ◦ Φ−1

T .

One computes:
α−2
T (ϕ) = aT ◦ ϕ ◦ a−1T ,

where
aT := ΦT ◦ D(Φ−1) ◦ ξT ∈ E×T , ξ : idC

'−→ D2 .

Conclusion

1. α−1 is an anti-isomorphism.
2. There is no reason why α−2 = id!



Standard dualities

Definition
(T,ΦT) is a fixed point of D if αT is an involution, i.e.

ΦT ◦ D(Φ−1) ◦ ξT = idT .

Definition
D is a standard duality if it exchanges standard and costandard
objects, i.e. D(∇(λ)) ' ∆(λ), and all indecomposable tilting objects
are fixed points of D.

Let D be a standard duality and T ∈ C be a tilting object. Then αT is
an involution on ET . Choose ĝλi as before and define its mirror

f̂λi := ΦT(λ) ◦ D(ĝλi ) ◦ Φ
−1
T : T → T(λ)

Let cλij := ĝλi ◦ f̂λj for i, j ∈ Iλ
T .

Theorem (Bellamy–T.)
{cλij | i, j ∈ Iλ

T } is a cellular basis with respect to αT .



Module dualities

How to check if a duality is a standard duality?

Let A be a K-algebra and suppose C is a subcategory of A-Mod.

Let τ be an anti-involution on A and consider
D := (−)τ ◦ (−)∨ : A-Mod→ A-Mod ,

where (−)τ is twist and (−)∨ is a subfunctor of (−)∗ = HomK(−, K).

Suppose D restricts to C. We call this a module duality.

Lemma (roughly)
An object T being self-dual under D is related to the existence of an
associative non-degenerate bilinear form on T , and being a fixed
point is related to the existence of a symmetric such form.

Idea: To show that a self-dual object T is actually a fixed point, take
the symmetrization of the form induced by D(T) ' T , and prove it is
non-degenerate.



Application: standard and
cellular bases on Hecke algebras



Standard bases

Let W be a (finite) complex reflection group and let Hq be the Hecke
algebra (à la Broué, Malle, and Rouquier) of W for an arbitrary
parameter q.

Let Hc be the rational Cherednik algebra (à la Etingof and Ginzburg)
of W at a “logarithm” c of q.

There is a category Oc of Hc-modules which is a highest weight
category with simple objects indexed by Irr(W). In particular, Oc is a
standard category.

By Ginzburg, Guay, Opdam, and Rouquier there is a tilting object
Tc ∈ Oc such that

Hq ' EndOc(Tc) .

Theorem (Bellamy–T.)
Hq has a standard basis coming from the decomposition of Tc into
indecomposable tilting objects.



Cellular bases

Suppose that W is a (finite) Coxeter group. Then Oc is equipped with
a module duality D.

Theorem (Bellamy–T.)
D is a standard duality. In particular, Hq has a cellular basis.

Problem
Describe the bases and the Specht modules explicitly.

We know that our “co-Specht modules” are isomorphic to the Spect
modules of:

Chlouveraki, M., Gordon, I., & Griffeth, S. (2012). Cell modules and
canonical basic sets for Hecke algebras from Cherednik algebras.

Furthermore, if W is a Coxeter group and we assume Lusztig’s P1–P15,
then they are isomorphic to Geck’s Specht modules.


