Cellularity of endomorphism algebras of tilting objects

Ulrich Thiel

University Kaiserslautern-Landau (RPTU) https://ulthiel.com/math

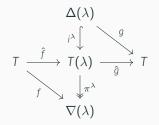
Joint work with Gwyn Bellamy Jul 17, 2023. Spetses (!)

Overview

History

- 1. Graham, J. J. & Lehrer, G. I. (1996). Cellular algebras. *Invent. Math.*, 123(1), 1–34.
- 2. Du, J. & Rui, H. (1998). Based algebras and standard bases for quasi-hereditary algebras. *Trans. Amer. Math. Soc.*, 350(8), 3207–3235.
- Andersen, H. H., Lehrer, G. I., & Zhang, R. (2015). Cellularity of certain quantum endomorphism algebras. *Pacific J. Math.*, 279(1–2), 11–35.
- Andersen, H. H., Stroppel, C., & Tubbenhauer, D. (2018). Cellular structures using U_q-tilting modules. Pacific J. Math., 292(1), 21–59.
- 5. Bellamy, G. & Thiel, U. (2022). Cellularity of endomorphism algebras of tilting objects. *Adv. Math. 404*, Paper No. 108387.

The following picture illustrates how Andersen, Stroppel, and Tubbenhauer constructed their cellular bases:



T: a tilting module for a quantum group U_q

 $T(\lambda)$: the indecomposable tilting U_q -module at λ

 $\Delta(\lambda)$ and $\nabla(\lambda)$: the standard and costandard modules at λ

We extended the AST construction from tilting modules for quantum groups to a general categorical setting.

Let C be a standard category (e.g. a highest weight category with finitely many simples).

Theorem

For any tilting object $T \in C$ one can construct a standard basis on the algebra $End_C(T)$ as in the picture.

Theorem

If C is equipped with a standard duality \mathbb{D} , then the construction can be done in such a way that the resulting basis is cellular with respect to the anti-involution on $\operatorname{End}_{\mathcal{C}}(T)$ induced by \mathbb{D} . In particular, $\operatorname{End}_{\mathcal{C}}(T)$ is a cellular algebra.

Theorem

The Hecke algebra associated to a complex reflection group (à la Broué, Malle, and Rouquier) admits a natural standard basis. For a finite Coxeter group, there is a cellular basis.

In particular, this reproves (over the complex numbers only, but *not* assuming Lusztig's P1–P15): Geck, M. (2007). Hecke algebras of finite type are cellular. *Invent. Math.*, *169*(3), 501–517.

Fundamental question about the nature of cellular algebras

Is every cellular algebra the endomorphism algebra of a tilting object?

This may finally shed a categorical light on cellularity.

Cellular algebras

Throughout: *E* is a finite-dimensional algebra over a field *K*.

Definition

A standard basis of *E* is a *K*-basis \mathcal{B} of *E* which is fibered over a poset Λ , i.e., $\mathcal{B} = \coprod_{\lambda \in \Lambda} \mathcal{B}^{\lambda}$, together with indexing sets \mathcal{I}^{λ} and \mathcal{J}^{λ} for any $\lambda \in \Lambda$ such that

$$\mathcal{B}^{\lambda} = \{ C_{ij}^{\lambda} \mid (i,j) \in \mathcal{I}^{\lambda} \times \mathcal{J}^{\lambda} \} ,$$

and for any $\varphi \in E$ and $c_{ij}^{\lambda} \in \mathcal{B}^{\lambda}$ we have

$$\begin{split} \varphi \cdot c_{ij}^{\lambda} &\equiv \sum_{k \in \mathcal{I}^{\lambda}} r_{k}^{\lambda}(\varphi, i) c_{kj}^{\lambda} \mod E^{<\lambda} \ , \\ c_{ij}^{\lambda} \cdot \varphi &\equiv \sum_{l \in \mathcal{J}^{\lambda}} r_{l}^{\lambda}(j, \varphi) c_{il}^{\lambda} \mod E^{<\lambda} \ , \end{split}$$

where $r_k^{\lambda}(\varphi, i), r_l^{\lambda}(j, \varphi) \in K$ are independent of j and i, respectively. Here, $E^{<\lambda}$ is the subspace of E spanned by the set $\bigcup_{u < \lambda} \mathcal{B}^{\mu}$.

Definition

A cellular basis of *E* is a standard basis \mathcal{B} together with an algebra anti-involution ι on *E* such that $\mathcal{I}^{\lambda} = \mathcal{J}^{\lambda}$ for all $\lambda \in \Lambda$ and

$$\iota(C_{ij}^{\lambda}) = C_{ji}^{\lambda}$$

for all $(i,j) \in \mathcal{I}^{\lambda} \times \mathcal{J}^{\lambda}$.

Remarks

- 1. A standard/cellular basis is a structure on *E*.
- 2. While admitting a cellular basis is a restrictive property on algebras (e.g. the Cartan determinant must be positive), admitting a standard basis is not (Koenig–Xi).
- 3. Nonetheless, a standard basis leads to Specht modules

$$W(\lambda) \coloneqq K \cdot \{a_i^{\lambda} \mid i \in \mathcal{I}^{\lambda}\}, \quad \varphi \cdot a_i^{\lambda} \coloneqq \sum_{k \in \mathcal{I}^{\lambda}} r_k^{\lambda}(\varphi, i) a_k^{\lambda},$$

and they may involve interesting combinatorics.

Examples of cellular algebras

1. Matrix algebras: $\iota = -t$, $\Lambda := \{\star\}$, $\mathcal{I}^{\star} := \mathcal{J}^{\star} := \{1, \ldots, n\}$, $c_{ij}^{\star} := E_{ij}$: $E_{kl}E_{ij} = \delta_{li}E_{kj}$.

- 2. Group algebra of a symmetric group, Hecke algebras of type A
- 3. Temperley–Lieb algebras, Brauer algebras

4. . . .

Observation (Andersen-Stroppel-Tubbenhauer)

All these examples arise as $End_{U_q-mod}(T)$ for a tilting module T and U_q a quantum group.

Their construction usually yields different cellular bases than the usual ones though (the unit 1 is *not* a basis element).

Problems of generalizing the AST construction

The AST construction should basically work for tilting objects in any highest weight category. But there are some subtleties:

- 1. The proof relies on weight space decomposition of U_q -modules.
- 2. Tilting modules need to behave as in Ringel's theory.
- The construction also works with U_q-mod in positive characteristic: not enough injectives, hence not highest weight.
- 4. Where does the involution come from? Likely from a duality on the category. But an arbitrary duality does not necessarily induce an involution on the endomorphism algebra!

Standard categories

We require categories with standard, costandard, and tilting objects behaving in the desired way.

We came up with the concept of standard categories.

(SC1) C is an essentially small and locally finite abelian category over a field K.

(Locally finite: all objects are of finite length and all Hom-spaces are finite-dimensional.)

(SC2) There is a complete set $\{L(\lambda)\}_{\lambda \in \Lambda}$ of representatives of isomorphism classes of simple objects of C indexed by a set Λ equipped with a partial order \leq .

Definition

A costandard object for $L(\lambda)$ is an object $\nabla(\lambda)$ such that Soc $\nabla(\lambda) \simeq L(\lambda)$ and all composition factors $L(\mu)$ of $\nabla(\lambda) / \operatorname{Soc} \nabla(\lambda)$ satisfy $\mu < \lambda$.

A standard object for $L(\lambda)$ is an object $\Delta(\lambda)$ such that $\operatorname{Hd} \Delta(\lambda) \simeq L(\lambda)$ and all composition factors $L(\mu)$ of $\operatorname{Rad} \Delta(\lambda)$ satisfy $\mu < \lambda$.

(SC3) Each $L(\lambda)$ has a costandard object $\nabla(\lambda)$ and a standard object $\Delta(\lambda)$ such that the following condition holds for all $\lambda, \mu \in \Lambda$ and $0 \le i \le 2$:

$$\mathsf{Ext}^{i}_{\mathcal{C}}(\Delta(\lambda), \nabla(\mu)) = \begin{cases} \mathcal{K} & \text{if } i = 0 \text{ and } \lambda = \mu , \\ 0 & \text{else }. \end{cases}$$

(We do not need to have enough injectives for this! The Ext-groups are isomorphic to the ones in the Ind-completion of C, and the latter behave as usual.)

Definition

An object $T \in C$ is tilting if it admits both a filtration whose quotients are standard objects and a filtration whose quotients are costandard objects.

The category \mathcal{C}^t of tilting objects is a Krull–Schmidt category.

(SC4) For any $\lambda \in \Lambda$ there is an indecomposable object $T(\lambda) \in C^t$ such that:

- 1. if $[T(\lambda) : L(\mu)] \neq 0$, then $\mu \leq \lambda$, and $[T(\lambda) : L(\lambda)] = 1$;
- 2. there is a monomorphism $\Delta(\lambda) \hookrightarrow T(\lambda)$;
- 3. there is an epimorphism $T(\lambda) \twoheadrightarrow \nabla(\lambda)$.

Moreover, the map $\lambda \mapsto T(\lambda)$ is a bijection between Λ and the set of isomorphism classes of indecomposable tilting objects of C.

A standard category is a category satisfying SC1–SC4.

Examples

The following are examples of standard categories:

- 1. Highest weight categories with finitely many simple objects.
- Lower finite highest weight categories à la Brundan–Stroppel,
 e.g. Rep(G) for a connected reductive group G.
- The Bernstein–Gelfand–Gelfand category O of a finite-dimensional complex semisimple Lie algebra g.
- 4. The category U_q -mod of finite-dimensional type-1 modules for a quantum group U_q associated to a finite-dimensional complex semisimple Lie algebra \mathfrak{g} and $q \in K$ (+some mild assumptions).

5. ...

(Generalizing) the AST construction

Inclusions and projections

Let $\ensuremath{\mathcal{C}}$ be a standard category.

For any $\lambda \in \Lambda$ choose a non-zero morphism

$$c^{\lambda} \colon \Delta(\lambda) \to \nabla(\lambda)$$
.

This is unique up to scalars by the Ext-assumption.

Choose an embedding

 $i^{\lambda} \colon \Delta(\lambda) \hookrightarrow T(\lambda)$

and a projection

$$\pi^{\lambda} \colon T(\lambda) \twoheadrightarrow \nabla(\lambda)$$

such that

$$\pi^{\lambda} \circ i^{\lambda} = c^{\lambda} \; .$$

Let $T \in C$ be a tilting object.

Any morphism $f: T \to \nabla(\lambda)$ has a lift $\hat{f}: T \to T(\lambda)$, i.e.

commutes.

Similarly, any morphism $g: \Delta(\lambda) \to T$ has a lift $\hat{g}: T(\lambda) \to T$, i.e.

commutes.

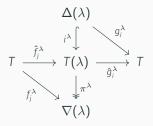
Putting things together

Let $\mathcal{I}_{T}^{\lambda} := \{ 1, \dots, (T : \nabla(\lambda)) \}$ and $\mathcal{J}_{T}^{\lambda} := \{ 1, \dots, (T : \Delta(\lambda)) \}$. Choose a basis $F_{T}^{\lambda} = \{f_{j} \mid j \in \mathcal{J}_{T}^{\lambda}\}$ of $\operatorname{Hom}_{\mathcal{C}}(T, \nabla(\lambda))$. Choose lifts $\hat{F}_{T}^{\lambda} := \{\hat{f}_{j}^{\lambda} \mid j \in \mathcal{J}_{T}^{\lambda}\} \subseteq \operatorname{Hom}_{\mathcal{C}}(T, T(\lambda))$. Choose a basis $G_{T}^{\lambda} = \{g_{i}^{\lambda} \mid i \in \mathcal{I}_{T}^{\lambda} \text{ of } \operatorname{Hom}_{\mathcal{C}}(\Delta(\lambda), T)$. Choose lifts $\hat{G}_{T}^{\lambda} := \{\hat{g}_{i}^{\lambda} \mid i \in \mathcal{I}_{T}^{\lambda}\} \subseteq \operatorname{Hom}_{\mathcal{C}}(T(\lambda), T)$.

Let

$$c_{ij}^{\lambda} \coloneqq \hat{g}_i^{\lambda} \circ \hat{f}_j^{\lambda} \in \operatorname{End}_{\mathcal{C}}(T)$$
.

We have



Theorem (Bellamy-T.)

 $\{c_{ij}^{\lambda} \mid i \in \mathcal{I}_{T}^{\lambda}, j \in \mathcal{J}_{T}^{\lambda}\}$ is a standard basis of $E_{T} := \operatorname{End}_{\mathcal{C}}(T)$.

The key problem is showing that $\{C_{ij}^{\lambda}\}$ is a basis of E_{T} .

This is where AST use restrictions φ_{λ} of $\varphi \in E_{T}$ to weight spaces T_{λ} of T to obtain a filtration $E_{T}^{\leq \lambda}$ of E_{T} , which is then used to prove this. We replaced:

$$\varphi_{\lambda} \coloneqq [\operatorname{\mathsf{Im}} \varphi \colon L(\lambda)] \in \mathbb{N}$$

and

$$E_T^{\leq \lambda} := \{ \varphi \in E_T \mid \varphi_\mu = 0 \text{ unless } \mu \leq \lambda \} .$$

With this replacement, the proof of AST works verbatim (this is not obvious, though).

Duality and cellularity

A problem

An involution on E_T making a standard basis a cellular basis should (philosophically) come from a duality $\mathbb{D}: \mathcal{C} \to \mathcal{C}$.

Let $T \in C$ be a tilting object which is self-dual, i.e. there is

 $\Phi_T \colon \mathbb{D}(T) \xrightarrow{\simeq} T$.

Define a K-algebra anti-morphism α_T^{-1} : $E_T \to E_T$ by

$$\alpha_{\mathsf{T}}^{-1}(\varphi) \coloneqq \Phi_{\mathsf{T}} \circ \mathbb{D}(\varphi) \circ \Phi_{\mathsf{T}}^{-1}$$

One computes:

$$\alpha_T^{-2}(\varphi) = a_T \circ \varphi \circ a_T^{-1} ,$$

where

$$a_T := \Phi_T \circ \mathbb{D}(\Phi^{-1}) \circ \xi_T \in E_T^{\times} , \quad \xi \colon \operatorname{id}_{\mathcal{C}} \xrightarrow{\simeq} \mathbb{D}^2 .$$

Conclusion

- 1. α^{-1} is an anti-isomorphism.
- 2. There is no reason why $\alpha^{-2} = id!$

Definition

 (T, Φ_T) is a fixed point of \mathbb{D} if α_T is an involution, i.e.

 $\Phi_T \circ \mathbb{D}(\Phi^{-1}) \circ \xi_T = \mathsf{id}_T$.

Definition

 \mathbb{D} is a standard duality if it exchanges standard and costandard objects, i.e. $\mathbb{D}(\nabla(\lambda)) \simeq \Delta(\lambda)$, and all indecomposable tilting objects are fixed points of \mathbb{D} .

Let \mathbb{D} be a standard duality and $T \in \mathcal{C}$ be a tilting object. Then α_T is an involution on E_T . Choose \hat{g}_i^{λ} as before and define its mirror

$$\hat{f}_i^{\lambda} \coloneqq \Phi_{T(\lambda)} \circ \mathbb{D}(\hat{g}_i^{\lambda}) \circ \Phi_T^{-1} \colon T \to T(\lambda)$$

Let $c_{ij}^{\lambda} \coloneqq \hat{g}_{i}^{\lambda} \circ \hat{f}_{j}^{\lambda}$ for $i, j \in \mathcal{I}_{T}^{\lambda}$.

Theorem (Bellamy–T.)

 $\{c_{ij}^{\lambda} \mid i, j \in \mathcal{I}_{T}^{\lambda}\}$ is a cellular basis with respect to α_{T} .

How to check if a duality is a standard duality?

Let A be a K-algebra and suppose $\mathcal C$ is a subcategory of A-Mod.

Let τ be an anti-involution on A and consider

$$\mathbb{D} \coloneqq (-)^{\tau} \circ (-)^{\vee} \colon A\operatorname{-Mod} \to A\operatorname{-Mod}$$
,

where $(-)^{\tau}$ is twist and $(-)^{\vee}$ is a subfunctor of $(-)^* = \text{Hom}_{\mathcal{K}}(-, \mathcal{K})$.

Suppose \mathbb{D} restricts to \mathcal{C} . We call this a module duality.

Lemma (roughly)

An object *T* being self-dual under \mathbb{D} is related to the existence of an associative non-degenerate bilinear form on *T*, and being a fixed point is related to the existence of a symmetric such form.

Idea: To show that a self-dual object *T* is actually a fixed point, take the symmetrization of the form induced by $\mathbb{D}(T) \simeq T$, and prove it is non-degenerate.

Application: standard and cellular bases on Hecke algebras

Let *W* be a (finite) complex reflection group and let $\mathcal{H}_{\mathbf{q}}$ be the Hecke algebra (à la Broué, Malle, and Rouquier) of *W* for an arbitrary parameter \mathbf{q} .

Let $H_{\mathbf{c}}$ be the rational Cherednik algebra (à la Etingof and Ginzburg) of W at a "logarithm" \mathbf{c} of \mathbf{q} .

There is a category $\mathcal{O}_{\mathbf{c}}$ of $H_{\mathbf{c}}$ -modules which is a highest weight category with simple objects indexed by Irr(W). In particular, $\mathcal{O}_{\mathbf{c}}$ is a standard category.

By Ginzburg, Guay, Opdam, and Rouquier there is a tilting object $T_{\mathbf{c}} \in \mathcal{O}_{\mathbf{c}}$ such that

 $\mathcal{H}_{\mathbf{q}} \simeq \mathsf{End}_{\mathcal{O}_{\mathbf{c}}}(\mathcal{T}_{\mathbf{c}})$.

Theorem (Bellamy-T.)

 $\mathcal{H}_{\mathbf{q}}$ has a standard basis coming from the decomposition of $T_{\mathbf{c}}$ into indecomposable tilting objects.

Suppose that *W* is a (finite) Coxeter group. Then $\mathcal{O}_{\mathbf{c}}$ is equipped with a module duality \mathbb{D} .

Theorem (Bellamy-T.)

 $\mathbb D$ is a standard duality. In particular, $\mathcal H_{\boldsymbol{q}}$ has a cellular basis.

Problem

Describe the bases and the Specht modules explicitly.

We know that our "co-Specht modules" are isomorphic to the Spect modules of:

Chlouveraki, M., Gordon, I., & Griffeth, S. (2012). Cell modules and canonical basic sets for Hecke algebras from Cherednik algebras.

Furthermore, if *W* is a Coxeter group and we assume Lusztig's P1–P15, then they are isomorphic to Geck's Specht modules.