The representation theory of the restricted rational Cherednik algebra for G15

Computed by Ulrich Thiel using CHAMP (see LMS J. Comput. Math., 2015). Last update on Fri Mar 27 12:48:19 CET 2015.

Note: In the larger tables each cell has a mouseover tooltip providing information about the cell.

Quick navigation: Exceptional hyperplanes

For generic parameters

Non-singleton Calogero–Moser families

3,10'',  ϕ3,6',  ϕ3,2},   {ϕ4,11,  ϕ4,5},   {ϕ2,11'',  ϕ2,17,  ϕ2,5,  ϕ2,11'},   {ϕ3,14,  ϕ3,10',  ϕ3,6''},   {ϕ3,4,  ϕ3,12',  ϕ3,8'},   {ϕ2,1,  ϕ2,7',  ϕ2,7'',  ϕ2,13},   {ϕ4,7,  ϕ4,13},   {ϕ3,8'',  ϕ3,16,  ϕ3,12''},   {ϕ2,9,  ϕ2,15',  ϕ2,15'',  ϕ2,21},   {ϕ4,3,  ϕ4,9}

Dimensions, Poincaré series and diagonal Verma multiplicities of the simple modules

ϕ dim L(ϕ) [Δ(ϕ) : L(ϕ)] PL(ϕ)
ϕ1,028811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,628811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,828811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,1428811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,1628811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,2228811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,1228811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,1828811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,2028811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,2628811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,2828811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ1,3428811 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 12t12 + 12t13 + 12t14 + 12t15 + 12t16 + 12t17 + 12t18 + 12t19 + 12t20 + 12t21 + 12t22 + 12t23 + 11t24 + 10t25 + 9t26 + 8t27 + 7t28 + 6t29 + 5t30 + 4t31 + 3t32 + 2t33 + t34
ϕ2,97222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,1228822 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 14t6 + 16t7 + 18t8 + 20t9 + 22t10 + 24t11 + 22t12 + 20t13 + 18t14 + 16t15 + 14t16 + 12t17 + 10t18 + 8t19 + 6t20 + 4t21 + 2t22
ϕ2,15'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,15''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,1828822 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 14t6 + 16t7 + 18t8 + 20t9 + 22t10 + 24t11 + 22t12 + 20t13 + 18t14 + 16t15 + 14t16 + 12t17 + 10t18 + 8t19 + 6t20 + 4t21 + 2t22
ϕ2,217222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,57222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,828822 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 14t6 + 16t7 + 18t8 + 20t9 + 22t10 + 24t11 + 22t12 + 20t13 + 18t14 + 16t15 + 14t16 + 12t17 + 10t18 + 8t19 + 6t20 + 4t21 + 2t22
ϕ2,11'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,11''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,1428822 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 14t6 + 16t7 + 18t8 + 20t9 + 22t10 + 24t11 + 22t12 + 20t13 + 18t14 + 16t15 + 14t16 + 12t17 + 10t18 + 8t19 + 6t20 + 4t21 + 2t22
ϕ2,177222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,17222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,428822 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 14t6 + 16t7 + 18t8 + 20t9 + 22t10 + 24t11 + 22t12 + 20t13 + 18t14 + 16t15 + 14t16 + 12t17 + 10t18 + 8t19 + 6t20 + 4t21 + 2t22
ϕ2,7'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,7''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,1028822 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 14t6 + 16t7 + 18t8 + 20t9 + 22t10 + 24t11 + 22t12 + 20t13 + 18t14 + 16t15 + 14t16 + 12t17 + 10t18 + 8t19 + 6t20 + 4t21 + 2t22
ϕ2,137222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ3,8'9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,29633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,8''9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,149633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,49633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,10''9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,169633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,10'9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,12'9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,6'9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,12''9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ3,6''9633 + 6t + 9t2 + 12t3 + 12t4 + 12t5 + 12t6 + 12t7 + 9t8 + 6t9 + 3t10
ϕ4,914444 + 8t + 12t2 + 16t3 + 20t4 + 24t5 + 20t6 + 16t7 + 12t8 + 8t9 + 4t10
ϕ4,1114444 + 8t + 12t2 + 16t3 + 20t4 + 24t5 + 20t6 + 16t7 + 12t8 + 8t9 + 4t10
ϕ4,714444 + 8t + 12t2 + 16t3 + 20t4 + 24t5 + 20t6 + 16t7 + 12t8 + 8t9 + 4t10
ϕ4,314444 + 8t + 12t2 + 16t3 + 20t4 + 24t5 + 20t6 + 16t7 + 12t8 + 8t9 + 4t10
ϕ4,514444 + 8t + 12t2 + 16t3 + 20t4 + 24t5 + 20t6 + 16t7 + 12t8 + 8t9 + 4t10
ϕ4,1314444 + 8t + 12t2 + 16t3 + 20t4 + 24t5 + 20t6 + 16t7 + 12t8 + 8t9 + 4t10

Characters of the simple modules

ϕ L(ϕ1,0) L(ϕ1,6) L(ϕ1,8) L(ϕ1,14) L(ϕ1,16) L(ϕ1,22) L(ϕ1,12) L(ϕ1,18) L(ϕ1,20) L(ϕ1,26) L(ϕ1,28) L(ϕ1,34) L(ϕ2,9) L(ϕ2,12) L(ϕ2,15') L(ϕ2,15'') L(ϕ2,18) L(ϕ2,21) L(ϕ2,5) L(ϕ2,8) L(ϕ2,11') L(ϕ2,11'') L(ϕ2,14) L(ϕ2,17) L(ϕ2,1) L(ϕ2,4) L(ϕ2,7') L(ϕ2,7'') L(ϕ2,10) L(ϕ2,13) L(ϕ3,8') L(ϕ3,2) L(ϕ3,8'') L(ϕ3,14) L(ϕ3,4) L(ϕ3,10'') L(ϕ3,16) L(ϕ3,10') L(ϕ3,12') L(ϕ3,6') L(ϕ3,12'') L(ϕ3,6'') L(ϕ4,9) L(ϕ4,11) L(ϕ4,7) L(ϕ4,3) L(ϕ4,5) L(ϕ4,13)
ϕ1,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0
ϕ1,6 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1
ϕ1,8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1
ϕ1,14 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0
ϕ1,16 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0
ϕ1,22 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1
ϕ1,12 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0
ϕ1,18 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1
ϕ1,20 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1
ϕ1,26 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0
ϕ1,28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0
ϕ1,34 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1
ϕ2,9 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 0 2 0 0 2 0 1 2 1 0 2 1 0 2 1 0 0 0 2 1 1 1 0 1 1 1 0 0 1 0 2 1 2
ϕ2,12 2 2 2 2 2 2 2 2 2 2 2 2 0 2 1 1 2 0 1 2 0 0 2 1 0 2 1 1 2 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 2 1
ϕ2,15' 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 0 2 0 1 2 1 0 2 0 0 2 1 0 2 1 0 0 2 0 1 1 0 1 1 1 0 1 2 1 2 0 1 0
ϕ2,15'' 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 1 2 1 0 2 0 1 2 1 1 2 0 1 2 0 2 0 0 0 0 1 1 1 0 1 1 1 2 1 2 0 1 0
ϕ2,18 2 2 2 2 2 2 2 2 2 2 2 2 1 2 0 0 2 1 0 2 1 1 2 0 1 2 0 0 2 1 1 1 1 1 0 1 0 1 1 0 1 0 1 2 1 1 0 1
ϕ2,21 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 1 2 1 1 2 1 0 2 0 1 2 0 1 2 0 0 2 0 0 1 0 1 1 1 0 1 1 0 1 0 2 1 2
ϕ2,5 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 0 2 0 1 2 0 1 2 0 0 2 0 1 2 1 1 0 1 1 0 2 0 0 1 0 1 1 2 2 1 0 0 1
ϕ2,8 2 2 2 2 2 2 2 2 2 2 2 2 0 2 1 1 2 0 0 2 1 1 2 0 1 2 0 0 2 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 2
ϕ2,11' 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 1 2 1 0 2 1 0 2 1 0 2 0 1 2 1 1 1 0 1 0 0 2 0 1 1 0 1 0 0 1 2 2 1
ϕ2,11'' 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 0 2 0 1 2 0 1 2 0 1 2 1 0 2 0 0 1 1 1 2 0 0 0 0 1 1 1 0 0 1 2 2 1
ϕ2,14 2 2 2 2 2 2 2 2 2 2 2 2 1 2 0 0 2 1 1 2 0 0 2 1 0 2 1 1 2 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 2 1 1 0
ϕ2,17 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 1 2 1 0 2 1 0 2 1 1 2 1 0 2 0 1 1 1 0 0 0 0 2 1 1 1 0 2 2 1 0 0 1
ϕ2,1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 1 1 0 1 1 1 0 0 0 0 2 1 0 2 1 2 0
ϕ2,4 2 2 2 2 2 2 2 2 2 2 2 2 1 2 0 0 2 1 0 2 1 1 2 0 0 2 1 1 2 0 1 0 1 0 0 1 0 1 1 1 1 1 2 1 1 0 1 1
ϕ2,7' 2 2 2 2 2 2 2 2 2 2 2 2 1 2 0 1 2 0 0 2 1 0 2 1 0 2 1 0 2 1 0 1 1 1 0 1 1 1 2 0 0 0 1 2 0 1 0 2
ϕ2,7'' 2 2 2 2 2 2 2 2 2 2 2 2 0 2 1 0 2 1 1 2 0 1 2 0 1 2 0 1 2 0 1 1 0 1 1 1 0 1 0 0 2 0 1 2 0 1 0 2
ϕ2,10 2 2 2 2 2 2 2 2 2 2 2 2 0 2 1 1 2 0 1 2 0 0 2 1 1 2 0 0 2 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 2 1 1
ϕ2,13 2 2 2 2 2 2 2 2 2 2 2 2 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 1 0 1 1 1 0 1 1 0 2 0 0 1 0 2 1 2 0
ϕ3,8' 3 3 3 3 3 3 3 3 3 3 3 3 0 3 1 1 3 1 1 3 1 1 3 0 2 3 0 0 3 1 1 2 0 1 1 1 1 1 1 0 2 1 1 2 0 2 1 3
ϕ3,2 3 3 3 3 3 3 3 3 3 3 3 3 1 3 0 1 3 1 1 3 0 1 3 1 0 3 1 2 3 0 2 1 1 0 1 1 1 1 0 1 1 2 2 1 3 1 2 0
ϕ3,8'' 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 1 3 0 0 3 1 1 3 1 1 3 0 0 3 2 0 1 1 2 1 1 1 1 2 1 1 0 1 2 0 2 1 3
ϕ3,14 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 0 3 1 1 3 1 0 3 1 0 3 2 1 3 0 1 0 2 1 1 1 1 1 1 2 0 1 2 1 3 1 2 0
ϕ3,4 3 3 3 3 3 3 3 3 3 3 3 3 2 3 0 0 3 1 1 3 1 1 3 0 0 3 1 1 3 1 1 0 2 1 1 2 0 1 1 1 1 1 3 2 2 0 1 1
ϕ3,10'' 3 3 3 3 3 3 3 3 3 3 3 3 0 3 2 1 3 0 1 3 0 1 3 1 1 3 1 0 3 1 0 1 1 2 2 1 1 0 1 1 1 1 0 1 1 3 2 2
ϕ3,16 3 3 3 3 3 3 3 3 3 3 3 3 1 3 0 0 3 2 0 3 1 1 3 1 1 3 1 1 3 0 2 1 1 0 0 1 1 2 1 1 1 1 3 2 2 0 1 1
ϕ3,10' 3 3 3 3 3 3 3 3 3 3 3 3 0 3 1 2 3 0 1 3 1 0 3 1 1 3 0 1 3 1 1 2 0 1 1 0 2 1 1 1 1 1 0 1 1 3 2 2
ϕ3,12' 3 3 3 3 3 3 3 3 3 3 3 3 0 3 1 1 3 1 1 3 0 0 3 2 0 3 1 1 3 1 1 1 1 1 1 0 2 1 1 2 0 1 1 0 2 2 3 1
ϕ3,6' 3 3 3 3 3 3 3 3 3 3 3 3 1 3 0 1 3 1 0 3 2 1 3 0 1 3 1 0 3 1 1 1 1 1 0 1 1 2 2 1 1 0 2 3 1 1 0 2
ϕ3,12'' 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 1 3 0 2 3 0 0 3 1 1 3 1 1 3 0 1 1 1 1 2 1 1 0 0 1 1 2 1 0 2 2 3 1
ϕ3,6'' 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 0 3 1 0 3 1 2 3 0 1 3 0 1 3 1 1 1 1 1 1 2 0 1 1 0 2 1 2 3 1 1 0 2
ϕ4,9 4 4 4 4 4 4 4 4 4 4 4 4 0 4 2 2 4 0 1 4 1 1 4 1 2 4 0 0 4 2 0 2 0 2 2 1 2 1 2 1 2 1 1 2 1 3 2 3
ϕ4,11 4 4 4 4 4 4 4 4 4 4 4 4 0 4 2 2 4 0 2 4 0 0 4 2 1 4 1 1 4 1 1 2 1 2 2 0 2 0 1 2 1 2 1 1 2 3 3 2
ϕ4,7 4 4 4 4 4 4 4 4 4 4 4 4 1 4 1 1 4 1 0 4 2 2 4 0 2 4 0 0 4 2 1 2 1 2 1 2 1 2 2 0 2 0 2 3 1 2 1 3
ϕ4,3 4 4 4 4 4 4 4 4 4 4 4 4 2 4 0 0 4 2 1 4 1 1 4 1 0 4 2 2 4 0 2 0 2 0 1 2 1 2 1 2 1 2 3 2 3 1 2 1
ϕ4,5 4 4 4 4 4 4 4 4 4 4 4 4 2 4 0 0 4 2 0 4 2 2 4 0 1 4 1 1 4 1 2 1 2 1 0 2 0 2 2 1 2 1 3 3 2 1 1 2
ϕ4,13 4 4 4 4 4 4 4 4 4 4 4 4 1 4 1 1 4 1 2 4 0 0 4 2 0 4 2 2 4 0 2 1 2 1 2 1 2 1 0 2 0 2 2 1 3 2 3 1

Graded characters of the simple modules

ϕ L(ϕ1,0) L(ϕ1,6) L(ϕ1,8) L(ϕ1,14) L(ϕ1,16) L(ϕ1,22) L(ϕ1,12) L(ϕ1,18) L(ϕ1,20) L(ϕ1,26) L(ϕ1,28) L(ϕ1,34) L(ϕ2,9) L(ϕ2,12) L(ϕ2,15') L(ϕ2,15'') L(ϕ2,18) L(ϕ2,21) L(ϕ2,5) L(ϕ2,8) L(ϕ2,11') L(ϕ2,11'') L(ϕ2,14) L(ϕ2,17) L(ϕ2,1) L(ϕ2,4) L(ϕ2,7') L(ϕ2,7'') L(ϕ2,10) L(ϕ2,13) L(ϕ3,8') L(ϕ3,2) L(ϕ3,8'') L(ϕ3,14) L(ϕ3,4) L(ϕ3,10'') L(ϕ3,16) L(ϕ3,10') L(ϕ3,12') L(ϕ3,6') L(ϕ3,12'') L(ϕ3,6'') L(ϕ4,9) L(ϕ4,11) L(ϕ4,7) L(ϕ4,3) L(ϕ4,5) L(ϕ4,13)
ϕ1,0 1 t6 t8 t14 t16 t22 t12 t18 t20 t26 t28 t34 t9 t12 0 0 t18 0 t5 t8 0 0 t14 0 t t4 0 0 t10 0 0 t2 t8 0 t4 0 0 0 0 0 0 t6 0 0 t7 t3 t5 0
ϕ1,6 t6 1 t14 t8 t22 t16 t18 t12 t26 t20 t34 t28 0 t18 t9 0 t12 0 0 t14 0 t5 t8 0 0 t10 0 t t4 0 t2 0 0 t8 0 t4 0 0 0 0 t6 0 t3 t5 0 0 0 t7
ϕ1,8 t16 t22 1 t6 t8 t14 t28 t34 t12 t18 t20 t26 t t4 0 0 t10 0 0 t12 0 0 t18 t9 0 t8 0 0 t14 t5 0 0 0 t6 0 t2 t8 0 t4 0 0 0 0 t3 0 t7 0 t5
ϕ1,14 t22 t16 t6 1 t14 t8 t34 t28 t18 t12 t26 t20 0 t10 t 0 t4 0 0 t18 t9 0 t12 0 0 t14 t5 0 t8 0 0 0 t6 0 t2 0 0 t8 0 t4 0 0 t7 0 t5 0 t3 0
ϕ1,16 t8 t14 t16 t22 1 t6 t20 t26 t28 t34 t12 t18 0 t8 0 0 t14 t5 0 t4 0 0 t10 t t9 t12 0 0 t18 0 t4 0 0 0 0 0 0 t6 0 t2 t8 0 t5 t7 t3 0 0 0
ϕ1,22 t14 t8 t22 t16 t6 1 t26 t20 t34 t28 t18 t12 0 t14 0 t5 t8 0 0 t10 t 0 t4 0 0 t18 0 t9 t12 0 0 t4 0 0 0 0 t6 0 t2 0 0 t8 0 0 0 t5 t7 t3
ϕ1,12 t12 t18 t20 t26 t28 t34 1 t6 t8 t14 t16 t22 0 t12 0 0 t18 t9 0 t8 0 0 t14 t5 0 t4 0 0 t10 t t8 0 0 t2 0 0 t4 0 0 t6 0 0 0 0 t7 t3 t5 0
ϕ1,18 t18 t12 t26 t20 t34 t28 t6 1 t14 t8 t22 t16 0 t18 0 t9 t12 0 0 t14 t5 0 t8 0 0 t10 t 0 t4 0 0 t8 t2 0 0 0 0 t4 t6 0 0 0 t3 t5 0 0 0 t7
ϕ1,20 t28 t34 t12 t18 t20 t26 t16 t22 1 t6 t8 t14 0 t4 0 0 t10 t t9 t12 0 0 t18 0 t5 t8 0 0 t14 0 0 t6 0 0 t8 0 0 t2 0 0 t4 0 0 t3 0 t7 0 t5
ϕ1,26 t34 t28 t18 t12 t26 t20 t22 t16 t6 1 t14 t8 0 t10 0 t t4 0 0 t18 0 t9 t12 0 0 t14 0 t5 t8 0 t6 0 0 0 0 t8 t2 0 0 0 0 t4 t7 0 t5 0 t3 0
ϕ1,28 t20 t26 t28 t34 t12 t18 t8 t14 t16 t22 1 t6 t5 t8 0 0 t14 0 t t4 0 0 t10 0 0 t12 0 0 t18 t9 0 0 t4 0 0 t6 0 0 t8 0 0 t2 t5 t7 t3 0 0 0
ϕ1,34 t26 t20 t34 t28 t18 t12 t14 t8 t22 t16 t6 1 0 t14 t5 0 t8 0 0 t10 0 t t4 0 0 t18 t9 0 t12 0 0 0 0 t4 t6 0 0 0 0 t8 t2 0 0 0 0 t5 t7 t3
ϕ2,9 t15 + t27 2t21 t11 + t23 t5 + t29 t7 + t19 2t13 t15 + t27 t9 + t33 t11 + t23 2t17 t7 + t19 t + t25 1 t3 + t15 t6 0 2t9 0 0 2t11 0 t2 t5 + t17 t8 0 t7 + t19 t10 0 2t13 t4 0 0 0 2t5 t7 t t7 0 t3 t9 t3 0 0 t2 0 2t6 t8 2t4
ϕ2,12 t12 + t24 t18 + t30 t8 + t20 t14 + t26 t4 + t16 t10 + t22 t12 + t24 t18 + t30 t8 + t20 t14 + t26 t4 + t16 t10 + t22 0 1 + t12 t3 t3 t6 + t18 0 t5 2t8 0 0 2t14 t5 0 t4 + t16 t7 t7 t10 + t22 0 t8 t2 t8 t2 t4 0 t4 0 0 t6 0 t6 t9 0 t7 t3 2t5 t
ϕ2,15' 2t21 t15 + t27 t5 + t29 t11 + t23 2t13 t7 + t19 t9 + t33 t15 + t27 2t17 t11 + t23 t + t25 t7 + t19 t6 2t9 1 0 t3 + t15 0 t2 t5 + t17 t8 0 2t11 0 0 2t13 t4 0 t7 + t19 t10 0 0 2t5 0 t t7 0 t7 t9 t3 0 t3 2t6 t8 2t4 0 t2 0
ϕ2,15'' t9 + t33 t15 + t27 2t17 t11 + t23 t + t25 t7 + t19 2t21 t15 + t27 t5 + t29 t11 + t23 2t13 t7 + t19 0 2t9 0 1 t3 + t15 t6 0 t5 + t17 0 t8 2t11 t2 t10 2t13 0 t4 t7 + t19 0 2t5 0 0 0 0 t7 t t7 0 t3 t9 t3 2t6 t8 2t4 0 t2 0
ϕ2,18 t18 + t30 t12 + t24 t14 + t26 t8 + t20 t10 + t22 t4 + t16 t18 + t30 t12 + t24 t14 + t26 t8 + t20 t10 + t22 t4 + t16 t3 t6 + t18 0 0 1 + t12 t3 0 2t14 t5 t5 2t8 0 t7 t10 + t22 0 0 t4 + t16 t7 t2 t8 t2 t8 0 t4 0 t4 t6 0 t6 0 t3 2t5 t t9 0 t7
ϕ2,21 t15 + t27 t9 + t33 t11 + t23 2t17 t7 + t19 t + t25 t15 + t27 2t21 t11 + t23 t5 + t29 t7 + t19 2t13 0 t3 + t15 0 t6 2t9 1 t8 2t11 t2 0 t5 + t17 0 t4 t7 + t19 0 t10 2t13 0 0 2t5 0 0 t7 0 t7 t t3 0 t3 t9 0 t2 0 2t6 t8 2t4
ϕ2,5 t7 + t19 t + t25 t15 + t27 t9 + t33 t11 + t23 2t17 t7 + t19 2t13 t15 + t27 2t21 t11 + t23 t5 + t29 t4 t7 + t19 t10 0 2t13 0 1 t3 + t15 0 t6 2t9 0 0 2t11 0 t2 t5 + t17 t8 t3 0 t3 t9 0 2t5 0 0 t7 0 t7 t 2t4 2t6 t2 0 0 t8
ϕ2,8 t4 + t16 t10 + t22 t12 + t24 t18 + t30 t8 + t20 t14 + t26 t4 + t16 t10 + t22 t12 + t24 t18 + t30 t8 + t20 t14 + t26 0 t4 + t16 t7 t7 t10 + t22 0 0 1 + t12 t3 t3 t6 + t18 0 t5 2t8 0 0 2t14 t5 0 t6 0 t6 t8 t2 t8 t2 t4 0 t4 0 t t3 0 t7 t9 2t5
ϕ2,11' 2t13 t7 + t19 2t21 t15 + t27 t5 + t29 t11 + t23 t + t25 t7 + t19 t9 + t33 t15 + t27 2t17 t11 + t23 0 2t13 0 t4 t7 + t19 t10 0 2t9 1 0 t3 + t15 t6 0 t5 + t17 0 t8 2t11 t2 t9 t3 0 t3 0 0 2t5 0 t t7 0 t7 0 0 t8 2t4 2t6 t2
ϕ2,11'' t + t25 t7 + t19 t9 + t33 t15 + t27 2t17 t11 + t23 2t13 t7 + t19 2t21 t15 + t27 t5 + t29 t11 + t23 t10 2t13 t4 0 t7 + t19 0 t6 2t9 0 1 t3 + t15 0 t2 t5 + t17 t8 0 2t11 0 0 t3 t9 t3 2t5 0 0 0 0 t7 t t7 0 0 t8 2t4 2t6 t2
ϕ2,14 t10 + t22 t4 + t16 t18 + t30 t12 + t24 t14 + t26 t8 + t20 t10 + t22 t4 + t16 t18 + t30 t12 + t24 t14 + t26 t8 + t20 t7 t10 + t22 0 0 t4 + t16 t7 t3 t6 + t18 0 0 1 + t12 t3 0 2t14 t5 t5 2t8 0 t6 0 t6 0 t2 t8 t2 t8 0 t4 0 t4 t7 t9 2t5 t t3 0
ϕ2,17 t7 + t19 2t13 t15 + t27 2t21 t11 + t23 t5 + t29 t7 + t19 t + t25 t15 + t27 t9 + t33 t11 + t23 2t17 0 t7 + t19 0 t10 2t13 t4 0 t3 + t15 t6 0 2t9 1 t8 2t11 t2 0 t5 + t17 0 t3 t9 t3 0 0 0 0 2t5 t7 t t7 0 2t4 2t6 t2 0 0 t8
ϕ2,1 t11 + t23 t5 + t29 t7 + t19 2t13 t15 + t27 2t21 t11 + t23 2t17 t7 + t19 t + t25 t15 + t27 t9 + t33 t8 2t11 0 t2 t5 + t17 0 t4 t7 + t19 0 t10 2t13 0 1 t3 + t15 0 t6 2t9 0 t7 t t7 0 t3 t9 t3 0 0 0 0 2t5 t8 0 2t6 t2 2t4 0
ϕ2,4 t8 + t20 t14 + t26 t4 + t16 t10 + t22 t12 + t24 t18 + t30 t8 + t20 t14 + t26 t4 + t16 t10 + t22 t12 + t24 t18 + t30 t5 2t8 0 0 2t14 t5 0 t4 + t16 t7 t7 t10 + t22 0 0 1 + t12 t3 t3 t6 + t18 0 t4 0 t4 0 0 t6 0 t6 t8 t2 t8 t2 2t5 t7 t3 0 t t9
ϕ2,7' 2t17 t11 + t23 t + t25 t7 + t19 t9 + t33 t15 + t27 t5 + t29 t11 + t23 2t13 t7 + t19 2t21 t15 + t27 t2 t5 + t17 0 t8 2t11 0 0 2t13 t4 0 t7 + t19 t10 0 2t9 1 0 t3 + t15 t6 0 t7 t t7 0 t3 t9 t3 2t5 0 0 0 t2 2t4 0 t8 0 2t6
ϕ2,7'' t5 + t29 t11 + t23 2t13 t7 + t19 2t21 t15 + t27 2t17 t11 + t23 t + t25 t7 + t19 t9 + t33 t15 + t27 0 t5 + t17 t8 0 2t11 t2 t10 2t13 0 t4 t7 + t19 0 t6 2t9 0 1 t3 + t15 0 t t7 0 t7 t9 t3 0 t3 0 0 2t5 0 t2 2t4 0 t8 0 2t6
ϕ2,10 t14 + t26 t8 + t20 t10 + t22 t4 + t16 t18 + t30 t12 + t24 t14 + t26 t8 + t20 t10 + t22 t4 + t16 t18 + t30 t12 + t24 0 2t14 t5 t5 2t8 0 t7 t10 + t22 0 0 t4 + t16 t7 t3 t6 + t18 0 0 1 + t12 t3 0 t4 0 t4 t6 0 t6 0 t2 t8 t2 t8 0 t t9 2t5 t7 t3
ϕ2,13 t11 + t23 2t17 t7 + t19 t + t25 t15 + t27 t9 + t33 t11 + t23 t5 + t29 t7 + t19 2t13 t15 + t27 2t21 0 2t11 t2 0 t5 + t17 t8 0 t7 + t19 t10 0 2t13 t4 0 t3 + t15 t6 0 2t9 1 t7 0 t7 t t3 0 t3 t9 0 2t5 0 0 t8 0 2t6 t2 2t4 0
ϕ3,8' t4 + t16 + t28 2t10 + t22 2t12 + t24 t6 + 2t18 t8 + 2t20 t2 + t14 + t26 2t16 + t28 t10 + 2t22 t12 + 2t24 t6 + t18 + t30 t8 + t20 + t32 2t14 + t26 0 t4 + 2t16 t7 t7 3t10 t t9 3t12 t3 t3 2t6 + t18 0 2t5 2t8 + t20 0 0 t2 + 2t14 t5 1 2t6 0 t6 t8 t2 t8 t2 t4 0 2t4 t10 t 2t3 0 2t7 t9 3t5
ϕ3,2 2t10 + t22 t4 + t16 + t28 t6 + 2t18 2t12 + t24 t2 + t14 + t26 t8 + 2t20 t10 + 2t22 2t16 + t28 t6 + t18 + t30 t12 + 2t24 2t14 + t26 t8 + t20 + t32 t7 3t10 0 t t4 + 2t16 t7 t3 2t6 + t18 0 t9 3t12 t3 0 t2 + 2t14 t5 2t5 2t8 + t20 0 2t6 1 t6 0 t2 t8 t2 t8 0 t4 t10 2t4 2t7 t9 3t5 t 2t3 0
ϕ3,8'' 2t16 + t28 t10 + 2t22 t12 + 2t24 t6 + t18 + t30 t8 + t20 + t32 2t14 + t26 t4 + t16 + t28 2t10 + t22 2t12 + t24 t6 + 2t18 t8 + 2t20 t2 + t14 + t26 t t4 + 2t16 t7 t7 3t10 0 0 3t12 t3 t3 2t6 + t18 t9 t5 2t8 + t20 0 0 t2 + 2t14 2t5 0 t6 1 2t6 t8 t2 t8 t2 2t4 t10 t4 0 t 2t3 0 2t7 t9 3t5
ϕ3,14 t10 + 2t22 2t16 + t28 t6 + t18 + t30 t12 + 2t24 2t14 + t26 t8 + t20 + t32 2t10 + t22 t4 + t16 + t28 t6 + 2t18 2t12 + t24 t2 + t14 + t26 t8 + 2t20 t7 3t10 t 0 t4 + 2t16 t7 t3 2t6 + t18 t9 0 3t12 t3 0 t2 + 2t14 2t5 t5 2t8 + t20 0 t6 0 2t6 1 t2 t8 t2 t8 t10 2t4 0 t4 2t7 t9 3t5 t 2t3 0
ϕ3,4 t8 + 2t20 t2 + t14 + t26 t4 + t16 + t28 2t10 + t22 2t12 + t24 t6 + 2t18 t8 + t20 + t32 2t14 + t26 2t16 + t28 t10 + 2t22 t12 + 2t24 t6 + t18 + t30 2t5 2t8 + t20 0 0 t2 + 2t14 t5 t t4 + 2t16 t7 t7 3t10 0 0 3t12 t3 t3 2t6 + t18 t9 t4 0 2t4 t10 1 2t6 0 t6 t8 t2 t8 t2 3t5 2t7 2t3 0 t t9
ϕ3,10'' t2 + t14 + t26 t8 + 2t20 2t10 + t22 t4 + t16 + t28 t6 + 2t18 2t12 + t24 2t14 + t26 t8 + t20 + t32 t10 + 2t22 2t16 + t28 t6 + t18 + t30 t12 + 2t24 0 t2 + 2t14 2t5 t5 2t8 + t20 0 t7 3t10 0 t t4 + 2t16 t7 t3 2t6 + t18 t9 0 3t12 t3 0 t4 t10 2t4 2t6 1 t6 0 t2 t8 t2 t8 0 t t9 3t5 2t7 2t3
ϕ3,16 t8 + t20 + t32 2t14 + t26 2t16 + t28 t10 + 2t22 t12 + 2t24 t6 + t18 + t30 t8 + 2t20 t2 + t14 + t26 t4 + t16 + t28 2t10 + t22 2t12 + t24 t6 + 2t18 t5 2t8 + t20 0 0 t2 + 2t14 2t5 0 t4 + 2t16 t7 t7 3t10 t t9 3t12 t3 t3 2t6 + t18 0 2t4 t10 t4 0 0 t6 1 2t6 t8 t2 t8 t2 3t5 2t7 2t3 0 t t9
ϕ3,10' 2t14 + t26 t8 + t20 + t32 t10 + 2t22 2t16 + t28 t6 + t18 + t30 t12 + 2t24 t2 + t14 + t26 t8 + 2t20 2t10 + t22 t4 + t16 + t28 t6 + 2t18 2t12 + t24 0 t2 + 2t14 t5 2t5 2t8 + t20 0 t7 3t10 t 0 t4 + 2t16 t7 t3 2t6 + t18 0 t9 3t12 t3 t10 2t4 0 t4 t6 0 2t6 1 t2 t8 t2 t8 0 t t9 3t5 2t7 2t3
ϕ3,12' 2t12 + t24 t6 + 2t18 t8 + 2t20 t2 + t14 + t26 t4 + t16 + t28 2t10 + t22 t12 + 2t24 t6 + t18 + t30 t8 + t20 + t32 2t14 + t26 2t16 + t28 t10 + 2t22 0 3t12 t3 t3 2t6 + t18 t9 t5 2t8 + t20 0 0 t2 + 2t14 2t5 0 t4 + 2t16 t7 t7 3t10 t t8 t2 t8 t2 t4 0 2t4 t10 1 2t6 0 t6 t9 0 2t7 2t3 3t5 t
ϕ3,6' t6 + 2t18 2t12 + t24 t2 + t14 + t26 t8 + 2t20 2t10 + t22 t4 + t16 + t28 t6 + t18 + t30 t12 + 2t24 2t14 + t26 t8 + t20 + t32 t10 + 2t22 2t16 + t28 t3 2t6 + t18 0 t9 3t12 t3 0 t2 + 2t14 2t5 t5 2t8 + t20 0 t7 3t10 t 0 t4 + 2t16 t7 t2 t8 t2 t8 0 t4 t10 2t4 2t6 1 t6 0 2t3 3t5 t t9 0 2t7
ϕ3,12'' t12 + 2t24 t6 + t18 + t30 t8 + t20 + t32 2t14 + t26 2t16 + t28 t10 + 2t22 2t12 + t24 t6 + 2t18 t8 + 2t20 t2 + t14 + t26 t4 + t16 + t28 2t10 + t22 t9 3t12 t3 t3 2t6 + t18 0 2t5 2t8 + t20 0 0 t2 + 2t14 t5 t t4 + 2t16 t7 t7 3t10 0 t8 t2 t8 t2 2t4 t10 t4 0 0 t6 1 2t6 t9 0 2t7 2t3 3t5 t
ϕ3,6'' t6 + t18 + t30 t12 + 2t24 2t14 + t26 t8 + t20 + t32 t10 + 2t22 2t16 + t28 t6 + 2t18 2t12 + t24 t2 + t14 + t26 t8 + 2t20 2t10 + t22 t4 + t16 + t28 t3 2t6 + t18 t9 0 3t12 t3 0 t2 + 2t14 t5 2t5 2t8 + t20 0 t7 3t10 0 t t4 + 2t16 t7 t2 t8 t2 t8 t10 2t4 0 t4 t6 0 2t6 1 2t3 3t5 t t9 0 2t7
ϕ4,9 t3 + 2t15 + t27 2t9 + 2t21 2t11 + 2t23 t5 + 2t17 + t29 t7 + 2t19 + t31 2t13 + 2t25 t3 + 2t15 + t27 2t9 + 2t21 2t11 + 2t23 t5 + 2t17 + t29 t7 + 2t19 + t31 2t13 + 2t25 0 t3 + 3t15 2t6 2t6 3t9 + t21 0 t8 4t11 t2 t2 2t5 + 2t17 t8 2t4 3t7 + t19 0 0 t + 3t13 2t4 0 2t5 0 2t5 2t7 t 2t7 t 2t3 t9 2t3 t9 1 2t2 t10 3t6 2t8 3t4
ϕ4,11 2t13 + 2t25 t7 + 2t19 + t31 2t9 + 2t21 t3 + 2t15 + t27 t5 + 2t17 + t29 2t11 + 2t23 2t13 + 2t25 t7 + 2t19 + t31 2t9 + 2t21 t3 + 2t15 + t27 t5 + 2t17 + t29 2t11 + 2t23 0 t + 3t13 2t4 2t4 3t7 + t19 0 2t6 3t9 + t21 0 0 t3 + 3t15 2t6 t2 2t5 + 2t17 t8 t8 4t11 t2 t9 2t3 t9 2t3 2t5 0 2t5 0 t 2t7 t 2t7 t10 1 2t8 3t4 3t6 2t2
ϕ4,7 t5 + 2t17 + t29 2t11 + 2t23 2t13 + 2t25 t7 + 2t19 + t31 2t9 + 2t21 t3 + 2t15 + t27 t5 + 2t17 + t29 2t11 + 2t23 2t13 + 2t25 t7 + 2t19 + t31 2t9 + 2t21 t3 + 2t15 + t27 t2 2t5 + 2t17 t8 t8 4t11 t2 0 t + 3t13 2t4 2t4 3t7 + t19 0 2t6 3t9 + t21 0 0 t3 + 3t15 2t6 t 2t7 t 2t7 t9 2t3 t9 2t3 2t5 0 2t5 0 2t2 3t4 1 2t8 t10 3t6
ϕ4,3 2t9 + 2t21 t3 + 2t15 + t27 t5 + 2t17 + t29 2t11 + 2t23 2t13 + 2t25 t7 + 2t19 + t31 2t9 + 2t21 t3 + 2t15 + t27 t5 + 2t17 + t29 2t11 + 2t23 2t13 + 2t25 t7 + 2t19 + t31 2t6 3t9 + t21 0 0 t3 + 3t15 2t6 t2 2t5 + 2t17 t8 t8 4t11 t2 0 t + 3t13 2t4 2t4 3t7 + t19 0 2t5 0 2t5 0 t 2t7 t 2t7 t9 2t3 t9 2t3 3t6 2t8 3t4 1 2t2 t10
ϕ4,5 t7 + 2t19 + t31 2t13 + 2t25 t3 + 2t15 + t27 2t9 + 2t21 2t11 + 2t23 t5 + 2t17 + t29 t7 + 2t19 + t31 2t13 + 2t25 t3 + 2t15 + t27 2t9 + 2t21 2t11 + 2t23 t5 + 2t17 + t29 2t4 3t7 + t19 0 0 t + 3t13 2t4 0 t3 + 3t15 2t6 2t6 3t9 + t21 0 t8 4t11 t2 t2 2t5 + 2t17 t8 2t3 t9 2t3 t9 0 2t5 0 2t5 2t7 t 2t7 t 3t4 3t6 2t2 t10 1 2t8
ϕ4,13 2t11 + 2t23 t5 + 2t17 + t29 t7 + 2t19 + t31 2t13 + 2t25 t3 + 2t15 + t27 2t9 + 2t21 2t11 + 2t23 t5 + 2t17 + t29 t7 + 2t19 + t31 2t13 + 2t25 t3 + 2t15 + t27 2t9 + 2t21 t8 4t11 t2 t2 2t5 + 2t17 t8 2t4 3t7 + t19 0 0 t + 3t13 2t4 0 t3 + 3t15 2t6 2t6 3t9 + t21 0 2t7 t 2t7 t 2t3 t9 2t3 t9 0 2t5 0 2t5 2t8 t10 3t6 2t2 3t4 1

Exceptional hyperplanes

Unknown