The representation theory of the restricted rational Cherednik algebra for G7

Computed by Ulrich Thiel using CHAMP (see LMS J. Comput. Math., 2015). Last update on Fri Mar 27 12:48:14 CET 2015.

Note: In the larger tables each cell has a mouseover tooltip providing information about the cell.

Quick navigation: Exceptional hyperplanes

For generic parameters

Non-singleton Calogero–Moser families

3,10,  ϕ3,2,  ϕ3,6},   {ϕ2,3',  ϕ2,9''},   {ϕ2,1,  ϕ2,7'''},   {ϕ2,7'',  ϕ2,13''},   {ϕ2,3'',  ϕ2,9'''},   {ϕ2,13',  ϕ2,7'},   {ϕ3,4,  ϕ3,8,  ϕ3,12},   {ϕ2,5',  ϕ2,11'},   {ϕ2,5''',  ϕ2,11'''},   {ϕ2,11'',  ϕ2,5''},   {ϕ2,15,  ϕ2,9'}

Dimensions, Poincaré series and diagonal Verma multiplicities of the simple modules

ϕ dim L(ϕ) [Δ(ϕ) : L(ϕ)] PL(ϕ)
ϕ1,014411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,4'14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,8'14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,4''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,8''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,12'14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,8'''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,12''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,1614411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,614411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,10'14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,14'14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,10''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,14''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,18'14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,14'''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,18''14411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ1,2214411 + 2t + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 10t9 + 11t10 + 12t11 + 11t12 + 10t13 + 9t14 + 8t15 + 7t16 + 6t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22
ϕ2,9'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,7'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,11'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,7''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,11''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,9''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,11'''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,9'''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,7'''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,157222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,13'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,5'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,13''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,5''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,3'7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,5'''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,3''7222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ2,17222 + 4t + 6t2 + 8t3 + 10t4 + 12t5 + 10t6 + 8t7 + 6t8 + 4t9 + 2t10
ϕ3,104833 + 6t + 9t2 + 12t3 + 9t4 + 6t5 + 3t6
ϕ3,44833 + 6t + 9t2 + 12t3 + 9t4 + 6t5 + 3t6
ϕ3,24833 + 6t + 9t2 + 12t3 + 9t4 + 6t5 + 3t6
ϕ3,84833 + 6t + 9t2 + 12t3 + 9t4 + 6t5 + 3t6
ϕ3,64833 + 6t + 9t2 + 12t3 + 9t4 + 6t5 + 3t6
ϕ3,124833 + 6t + 9t2 + 12t3 + 9t4 + 6t5 + 3t6

Characters of the simple modules

ϕ L(ϕ1,0) L(ϕ1,4') L(ϕ1,8') L(ϕ1,4'') L(ϕ1,8'') L(ϕ1,12') L(ϕ1,8''') L(ϕ1,12'') L(ϕ1,16) L(ϕ1,6) L(ϕ1,10') L(ϕ1,14') L(ϕ1,10'') L(ϕ1,14'') L(ϕ1,18') L(ϕ1,14''') L(ϕ1,18'') L(ϕ1,22) L(ϕ2,9') L(ϕ2,7') L(ϕ2,11') L(ϕ2,7'') L(ϕ2,11'') L(ϕ2,9'') L(ϕ2,11''') L(ϕ2,9''') L(ϕ2,7''') L(ϕ2,15) L(ϕ2,13') L(ϕ2,5') L(ϕ2,13'') L(ϕ2,5'') L(ϕ2,3') L(ϕ2,5''') L(ϕ2,3'') L(ϕ2,1) L(ϕ3,10) L(ϕ3,4) L(ϕ3,2) L(ϕ3,8) L(ϕ3,6) L(ϕ3,12)
ϕ1,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0
ϕ1,4' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0
ϕ1,8' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1
ϕ1,4'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0
ϕ1,8'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1
ϕ1,12' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0
ϕ1,8''' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1
ϕ1,12'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 0
ϕ1,16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0
ϕ1,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0
ϕ1,10' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1
ϕ1,14' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0
ϕ1,10'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 1
ϕ1,14'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0
ϕ1,18' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0
ϕ1,14''' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0
ϕ1,18'' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0
ϕ1,22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1
ϕ2,9' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 1 0 1 0 1 0 1 1 2 1 2 1 2 1 2 1 1 0 1 0 0 2
ϕ2,7' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 0 2 1 1 1 0 1 1 0 2 0 1 1 1 2 2 0 0 1 0 1
ϕ2,11' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 1 1 1 0 0 0 1 1 2 1 1 1 2 2 2 1 1 0 1 2 0 0 1
ϕ2,7'' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 1 1 2 1 2 1 0 1 2 1 1 0 1 0 1 2 2 0 0 1 0 1
ϕ2,11'' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 0 0 0 1 1 1 2 1 1 2 2 2 1 0 1 2 0 0 1
ϕ2,9'' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 1 1 0 1 1 1 0 0 2 1 1 2 1 1 1 2 2 1 0 1 0 0 2
ϕ2,11''' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 1 0 1 0 1 1 0 1 2 1 2 1 2 1 1 2 1 0 1 2 0 0 1
ϕ2,9''' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1 1 0 1 1 0 2 2 1 1 1 2 1 1 2 1 0 1 0 0 2
ϕ2,7''' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 2 0 1 1 2 1 1 1 2 0 2 1 1 0 1 1 2 0 0 1 0 1
ϕ2,15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 1 0 1 0 1 0 1 0 1 0 1 0 1 2 0
ϕ2,13' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 2 0 1 1 1 2 1 1 2 0 2 1 1 1 0 0 2 1 0 1 0
ϕ2,5' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 0 1 1 1 0 0 0 1 1 1 0 0 2 1 0
ϕ2,13'' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 0 1 0 1 2 1 0 1 1 2 1 2 1 0 0 2 1 0 1 0
ϕ2,5'' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 2 2 2 1 1 1 0 1 1 0 0 0 1 1 0 0 2 1 0
ϕ2,3' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 1 2 2 0 1 1 0 1 1 1 0 0 0 1 0 1 2 0
ϕ2,5''' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 1 2 1 0 1 0 1 0 1 1 0 1 1 0 0 2 1 0
ϕ2,3'' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 1 2 0 0 1 1 1 0 1 1 0 0 1 0 1 2 0
ϕ2,1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 0 2 1 1 0 1 1 1 0 2 0 1 1 2 1 1 0 2 1 0 1 0
ϕ3,10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 1 1 1 1 0 1 0 1 3 2 2 2 2 3 2 3 2 1 1 2 0 0 2
ϕ3,4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 3 2 3 2 0 1 1 1 1 0 1 0 1 1 1 0 2 2 0
ϕ3,2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 1 3 1 2 1 2 3 1 0 2 0 2 1 2 1 0 0 2 1 1 2 0
ϕ3,8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 0 2 0 2 1 2 1 0 2 3 1 3 1 2 1 2 3 2 0 1 1 0 2
ϕ3,6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 3 1 3 2 3 2 1 1 2 0 2 0 1 0 1 2 2 0 0 2 1 1
ϕ3,12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 2 0 2 0 1 0 1 2 2 1 3 1 3 2 3 2 1 0 2 2 0 1 1

Graded characters of the simple modules

ϕ L(ϕ1,0) L(ϕ1,4') L(ϕ1,8') L(ϕ1,4'') L(ϕ1,8'') L(ϕ1,12') L(ϕ1,8''') L(ϕ1,12'') L(ϕ1,16) L(ϕ1,6) L(ϕ1,10') L(ϕ1,14') L(ϕ1,10'') L(ϕ1,14'') L(ϕ1,18') L(ϕ1,14''') L(ϕ1,18'') L(ϕ1,22) L(ϕ2,9') L(ϕ2,7') L(ϕ2,11') L(ϕ2,7'') L(ϕ2,11'') L(ϕ2,9'') L(ϕ2,11''') L(ϕ2,9''') L(ϕ2,7''') L(ϕ2,15) L(ϕ2,13') L(ϕ2,5') L(ϕ2,13'') L(ϕ2,5'') L(ϕ2,3') L(ϕ2,5''') L(ϕ2,3'') L(ϕ2,1) L(ϕ3,10) L(ϕ3,4) L(ϕ3,2) L(ϕ3,8) L(ϕ3,6) L(ϕ3,12)
ϕ1,0 1 t4 t8 t4 t8 t12 t8 t12 t16 t6 t10 t14 t10 t14 t18 t14 t18 t22 t9 t7 0 t7 0 0 0 0 0 0 0 t5 0 t5 t3 t5 t3 t 0 t4 t2 0 0 0
ϕ1,4' t8 1 t4 t12 t4 t8 t16 t8 t12 t14 t6 t10 t18 t10 t14 t22 t14 t18 t5 0 t7 t3 t7 t5 0 t5 t3 0 t9 0 0 0 0 t 0 0 0 0 0 t4 t2 0
ϕ1,8' t4 t8 1 t8 t12 t4 t12 t16 t8 t10 t14 t6 t14 t18 t10 t18 t22 t14 0 0 0 0 t3 0 t3 t 0 t7 t5 t9 t5 0 t7 0 0 t5 t2 0 0 0 0 t4
ϕ1,4'' t8 t12 t16 1 t4 t8 t4 t8 t12 t14 t18 t22 t6 t10 t14 t10 t14 t18 t5 t3 0 0 t7 t5 t7 t5 t3 0 0 t t9 0 0 0 0 0 0 0 0 t4 t2 0
ϕ1,8'' t16 t8 t12 t8 1 t4 t12 t4 t8 t22 t14 t18 t14 t6 t10 t18 t10 t14 t 0 t3 0 0 0 t3 0 0 0 t5 0 t5 t9 t7 0 t7 t5 t2 0 0 0 0 t4
ϕ1,12' t12 t16 t8 t4 t8 1 t8 t12 t4 t18 t22 t14 t10 t14 t6 t14 t18 t10 0 0 0 t7 0 t9 0 0 t7 t3 t t5 0 t5 0 t5 t3 0 0 t4 t2 0 0 0
ϕ1,8''' t4 t8 t12 t8 t12 t16 1 t4 t8 t10 t14 t18 t14 t18 t22 t6 t10 t14 0 0 t3 0 t3 t 0 0 0 t7 t5 0 t5 0 0 t9 t7 t5 t2 0 0 0 0 t4
ϕ1,12'' t12 t4 t8 t16 t8 t12 t8 1 t4 t18 t10 t14 t22 t14 t18 t14 t6 t10 0 t7 0 0 0 0 0 t9 t7 t3 0 t5 t t5 t3 t5 0 0 0 t4 t2 0 0 0
ϕ1,16 t8 t12 t4 t12 t16 t8 t4 t8 1 t14 t18 t10 t18 t22 t14 t10 t14 t6 t5 t3 t7 t3 0 t5 t7 t5 0 0 0 0 0 t 0 0 0 t9 0 0 0 t4 t2 0
ϕ1,6 t6 t10 t14 t10 t14 t18 t14 t18 t22 1 t4 t8 t4 t8 t12 t8 t12 t16 0 0 t5 0 t5 t3 t5 t3 t t9 t7 0 t7 0 0 0 0 0 t4 0 0 t2 0 0
ϕ1,10' t14 t6 t10 t18 t10 t14 t22 t14 t18 t8 1 t4 t12 t4 t8 t16 t8 t12 0 t9 0 0 0 0 t 0 0 t5 0 t7 t3 t7 t5 0 t5 t3 0 0 t4 0 0 t2
ϕ1,14' t10 t14 t6 t14 t18 t10 t18 t22 t14 t4 t8 1 t8 t12 t4 t12 t16 t8 t7 t5 t9 t5 0 t7 0 0 t5 0 0 0 0 t3 0 t3 t 0 0 t2 0 0 t4 0
ϕ1,10'' t14 t18 t22 t6 t10 t14 t10 t14 t18 t8 t12 t16 1 t4 t8 t4 t8 t12 0 0 t t9 0 0 0 0 0 t5 t3 0 0 t7 t5 t7 t5 t3 0 0 t4 0 0 t2
ϕ1,14'' t22 t14 t18 t14 t6 t10 t18 t10 t14 t16 t8 t12 t8 1 t4 t12 t4 t8 0 t5 0 t5 t9 t7 0 t7 t5 t 0 t3 0 0 0 t3 0 0 0 t2 0 0 t4 0
ϕ1,18' t18 t22 t14 t10 t14 t6 t14 t18 t10 t12 t16 t8 t4 t8 1 t8 t12 t4 t3 t t5 0 t5 0 t5 t3 0 0 0 0 t7 0 t9 0 0 t7 t4 0 0 t2 0 0
ϕ1,14''' t10 t14 t18 t14 t18 t22 t6 t10 t14 t4 t8 t12 t8 t12 t16 1 t4 t8 t7 t5 0 t5 0 0 t9 t7 t5 0 0 t3 0 t3 t 0 0 0 0 t2 0 0 t4 0
ϕ1,18'' t18 t10 t14 t22 t14 t18 t14 t6 t10 t12 t4 t8 t16 t8 t12 t8 1 t4 t3 0 t5 t t5 t3 t5 0 0 0 t7 0 0 0 0 0 t9 t7 t4 0 0 t2 0 0
ϕ1,22 t14 t18 t10 t18 t22 t14 t10 t14 t6 t8 t12 t4 t12 t16 t8 t4 t8 1 0 0 0 0 t 0 0 0 t9 t5 t3 t7 t3 0 t5 t7 t5 0 0 0 t4 0 0 t2
ϕ2,9' 2t15 t7 + t19 2t11 t7 + t19 2t11 t3 + t15 2t11 t3 + t15 2t7 t9 + t21 2t13 t5 + t17 2t13 t5 + t17 2t9 t5 + t17 2t9 t + t13 1 0 t2 0 t2 0 t2 0 t10 t6 2t4 t8 2t4 t8 2t6 t8 2t6 t4 t 0 t5 0 0 2t3
ϕ2,7' t5 + t17 t9 + t21 2t13 2t9 2t13 t5 + t17 t + t13 t5 + t17 2t9 2t11 2t15 t7 + t19 t3 + t15 t7 + t19 2t11 2t7 2t11 t3 + t15 t2 1 2t4 0 2t4 t2 t4 t2 0 t8 t6 0 2t6 0 t8 t10 t8 2t6 2t3 0 0 t 0 t5
ϕ2,11' 2t13 t5 + t17 t9 + t21 t5 + t17 2t9 2t13 2t9 t + t13 t5 + t17 t7 + t19 2t11 2t15 2t11 t3 + t15 t7 + t19 t3 + t15 2t7 2t11 0 t8 1 t8 0 0 0 t10 t8 2t4 t2 t6 t2 2t6 2t4 2t6 t4 t2 0 t5 2t3 0 0 t
ϕ2,7'' t5 + t17 2t9 t + t13 t9 + t21 2t13 t5 + t17 2t13 t5 + t17 2t9 2t11 t3 + t15 2t7 2t15 t7 + t19 2t11 t7 + t19 2t11 t3 + t15 t2 0 t4 1 2t4 t2 2t4 t2 0 t8 2t6 t10 t6 0 t8 0 t8 2t6 2t3 0 0 t 0 t5
ϕ2,11'' t + t13 t5 + t17 2t9 t5 + t17 t9 + t21 2t13 2t9 2t13 t5 + t17 2t7 2t11 t3 + t15 2t11 2t15 t7 + t19 t3 + t15 t7 + t19 2t11 t10 t8 0 t8 1 0 0 0 t8 t4 t2 2t6 t2 t6 2t4 2t6 2t4 t2 0 t5 2t3 0 0 t
ϕ2,9'' t3 + t15 2t7 2t11 t7 + t19 2t11 2t15 2t11 t3 + t15 t7 + t19 2t9 t + t13 t5 + t17 2t13 t5 + t17 t9 + t21 t5 + t17 2t9 2t13 0 t10 t2 0 t2 1 t2 0 0 2t6 t4 t8 2t4 t8 t6 t8 2t6 2t4 t 0 t5 0 0 2t3
ϕ2,11''' 2t13 t5 + t17 2t9 t5 + t17 2t9 t + t13 t9 + t21 2t13 t5 + t17 t7 + t19 2t11 t3 + t15 2t11 t3 + t15 2t7 2t15 t7 + t19 2t11 0 t8 0 t8 0 t10 1 0 t8 2t4 t2 2t6 t2 2t6 t4 t6 2t4 t2 0 t5 2t3 0 0 t
ϕ2,9''' t3 + t15 t7 + t19 2t11 2t7 2t11 t3 + t15 2t11 2t15 t7 + t19 2t9 2t13 t5 + t17 t + t13 t5 + t17 2t9 t5 + t17 t9 + t21 2t13 0 0 t2 t10 t2 0 t2 1 0 2t6 2t4 t8 t4 t8 2t6 t8 t6 2t4 t 0 t5 0 0 2t3
ϕ2,7''' t5 + t17 2t9 2t13 2t9 t + t13 t5 + t17 2t13 t5 + t17 t9 + t21 2t11 t3 + t15 t7 + t19 t3 + t15 2t7 2t11 t7 + t19 2t11 2t15 t2 0 2t4 0 t4 t2 2t4 t2 1 t8 2t6 0 2t6 t10 t8 0 t8 t6 2t3 0 0 t 0 t5
ϕ2,15 t9 + t21 2t13 t5 + t17 2t13 t5 + t17 2t9 t5 + t17 2t9 t + t13 2t15 t7 + t19 2t11 t7 + t19 2t11 t3 + t15 2t11 t3 + t15 2t7 t6 2t4 t8 2t4 t8 2t6 t8 2t6 t4 1 0 t2 0 t2 0 t2 0 t10 0 t 0 t5 2t3 0
ϕ2,13' 2t11 2t15 t7 + t19 t3 + t15 t7 + t19 2t11 2t7 2t11 t3 + t15 t5 + t17 t9 + t21 2t13 2t9 2t13 t5 + t17 t + t13 t5 + t17 2t9 t8 t6 0 2t6 0 t8 t10 t8 2t6 t2 1 2t4 0 2t4 t2 t4 t2 0 0 2t3 t 0 t5 0
ϕ2,5' t7 + t19 2t11 2t15 2t11 t3 + t15 t7 + t19 t3 + t15 2t7 2t11 2t13 t5 + t17 t9 + t21 t5 + t17 2t9 2t13 2t9 t + t13 t5 + t17 2t4 t2 t6 t2 2t6 2t4 2t6 t4 t2 0 t8 1 t8 0 0 0 t10 t8 t5 0 0 2t3 t 0
ϕ2,13'' 2t11 t3 + t15 2t7 2t15 t7 + t19 2t11 t7 + t19 2t11 t3 + t15 t5 + t17 2t9 t + t13 t9 + t21 2t13 t5 + t17 2t13 t5 + t17 2t9 t8 2t6 t10 t6 0 t8 0 t8 2t6 t2 0 t4 1 2t4 t2 2t4 t2 0 0 2t3 t 0 t5 0
ϕ2,5'' 2t7 2t11 t3 + t15 2t11 2t15 t7 + t19 t3 + t15 t7 + t19 2t11 t + t13 t5 + t17 2t9 t5 + t17 t9 + t21 2t13 2t9 2t13 t5 + t17 t4 t2 2t6 t2 t6 2t4 2t6 2t4 t2 t10 t8 0 t8 1 0 0 0 t8 t5 0 0 2t3 t 0
ϕ2,3' 2t9 t + t13 t5 + t17 2t13 t5 + t17 t9 + t21 t5 + t17 2t9 2t13 t3 + t15 2t7 2t11 t7 + t19 2t11 2t15 2t11 t3 + t15 t7 + t19 2t6 t4 t8 2t4 t8 t6 t8 2t6 2t4 0 t10 t2 0 t2 1 t2 0 0 0 t 0 t5 2t3 0
ϕ2,5''' t7 + t19 2t11 t3 + t15 2t11 t3 + t15 2t7 2t15 t7 + t19 2t11 2t13 t5 + t17 2t9 t5 + t17 2t9 t + t13 t9 + t21 2t13 t5 + t17 2t4 t2 2t6 t2 2t6 t4 t6 2t4 t2 0 t8 0 t8 0 t10 1 0 t8 t5 0 0 2t3 t 0
ϕ2,3'' 2t9 2t13 t5 + t17 t + t13 t5 + t17 2t9 t5 + t17 t9 + t21 2t13 t3 + t15 t7 + t19 2t11 2t7 2t11 t3 + t15 2t11 2t15 t7 + t19 2t6 2t4 t8 t4 t8 2t6 t8 t6 2t4 0 0 t2 t10 t2 0 t2 1 0 0 t 0 t5 2t3 0
ϕ2,1 2t11 t3 + t15 t7 + t19 t3 + t15 2t7 2t11 t7 + t19 2t11 2t15 t5 + t17 2t9 2t13 2t9 t + t13 t5 + t17 2t13 t5 + t17 t9 + t21 t8 2t6 0 2t6 t10 t8 0 t8 t6 t2 0 2t4 0 t4 t2 2t4 t2 1 0 2t3 t 0 t5 0
ϕ3,10 t2 + 2t14 2t6 + t18 3t10 2t6 + t18 3t10 t2 + 2t14 3t10 t2 + 2t14 2t6 + t18 2t8 + t20 3t12 t4 + 2t16 3t12 t4 + 2t16 2t8 + t20 t4 + 2t16 2t8 + t20 3t12 0 t9 t t9 t 0 t 0 t9 3t5 2t3 2t7 2t3 2t7 3t5 2t7 3t5 2t3 1 t6 2t4 0 0 2t2
ϕ3,4 2t8 + t20 3t12 t4 + 2t16 3t12 t4 + 2t16 2t8 + t20 t4 + 2t16 2t8 + t20 3t12 t2 + 2t14 2t6 + t18 3t10 2t6 + t18 3t10 t2 + 2t14 3t10 t2 + 2t14 2t6 + t18 3t5 2t3 2t7 2t3 2t7 3t5 2t7 3t5 2t3 0 t9 t t9 t 0 t 0 t9 t6 1 0 2t4 2t2 0
ϕ3,2 3t10 t2 + 2t14 2t6 + t18 t2 + 2t14 2t6 + t18 3t10 2t6 + t18 3t10 t2 + 2t14 t4 + 2t16 2t8 + t20 3t12 2t8 + t20 3t12 t4 + 2t16 3t12 t4 + 2t16 2t8 + t20 2t7 3t5 t9 3t5 t9 2t7 t9 2t7 3t5 t 0 2t3 0 2t3 t 2t3 t 0 0 2t2 1 t6 2t4 0
ϕ3,8 t4 + 2t16 2t8 + t20 3t12 2t8 + t20 3t12 t4 + 2t16 3t12 t4 + 2t16 2t8 + t20 3t10 t2 + 2t14 2t6 + t18 t2 + 2t14 2t6 + t18 3t10 2t6 + t18 3t10 t2 + 2t14 t 0 2t3 0 2t3 t 2t3 t 0 2t7 3t5 t9 3t5 t9 2t7 t9 2t7 3t5 2t2 0 t6 1 0 2t4
ϕ3,6 2t6 + t18 3t10 t2 + 2t14 3t10 t2 + 2t14 2t6 + t18 t2 + 2t14 2t6 + t18 3t10 3t12 t4 + 2t16 2t8 + t20 t4 + 2t16 2t8 + t20 3t12 2t8 + t20 3t12 t4 + 2t16 2t3 t 3t5 t 3t5 2t3 3t5 2t3 t t9 2t7 0 2t7 0 t9 0 t9 2t7 2t4 0 0 2t2 1 t6
ϕ3,12 3t12 t4 + 2t16 2t8 + t20 t4 + 2t16 2t8 + t20 3t12 2t8 + t20 3t12 t4 + 2t16 2t6 + t18 3t10 t2 + 2t14 3t10 t2 + 2t14 2t6 + t18 t2 + 2t14 2t6 + t18 3t10 t9 2t7 0 2t7 0 t9 0 t9 2t7 2t3 t 3t5 t 3t5 2t3 3t5 2t3 t 0 2t4 2t2 0 t6 1

Exceptional hyperplanes

Unknown