• Computational aspects of Calogero-Moser spaces
    With C. Bonnafé. [arXiv], 2022.
  • Wreath Macdonald polynomials at q=t as characters of rational Cherednik algebras
    With D. Mathiä. [arXiv], 2021.
  • On parabolic subgroups of symplectic reflection groups
    With G. Bellamy and J. Schmitt. [arXiv], 2021.
  • Cores of graded algebras with triangular decomposition (will be updated!)
    With G. Bellamy. [arXiv], 2017.


  1. Introduction to Soergel bimodules
    RSME Springer Series, Vol. 5, 588pp (2020). With B. Elias, S. Makisumi, and G. Williamson. [Springer], [MR], [Erratum+more].


All papers are peer-reviewed. I’m maintaining an erratum.

  1. Cellularity of endomorphism algebras of tilting objects
    Adv. Math. (2022, to appear). With G. Bellamy. [Journal], [arXiv]
  2. Towards the classification of symplectic linear quotient singularities admitting a symplectic resolution
    Math. Z. 300 (2022), no. 1, 661–681. With G. Bellamy and J. Schmitt. [arXiv], [Journal], [MR]
  3. Highest weight theory for finite-dimensional graded algebras with triangular decomposition
    Adv. Math330 (2018), 361–419. With G. Bellamy. [arXiv], [Journal], [MR]
  4. Blocks in flat families of finite-dimensional algebras
    Pac. J. Math. 295 (2018), No. 1, 191–240. [arXiv], [Journal], [MR]
  5. Hyperplane arrangements associated to symplectic quotient singularities
    Phenomenological approach to algebraic geometry, 25–45, Banach Center Publ., 116,
    Polish Acad. Sci. Inst. Math., Warsaw, 2018. With G. Bellamy and T. Schedler. [arXiv], [Journal],  [MR]
  6. Restricted rational Cherednik algebras
    EMS Ser. Congr. Rep., Representation theory – current trends and perspectives (2017), 681–745. [arXiv], [Journal], [MR]
  7. Cuspidal Calogero–Moser and Lusztig families for Coxeter groups
    J. Algebra 462 (2016), 197–252. With G. Bellamy. [arXiv], [Journal], [MR]
  8. Decomposition matrices are generically trivial
    Int. Math. Res. Not. (2016), no. 7, 2157–2196. [arXiv], [Journal], [MR]
  9. CHAMP: A Cherednik Algebra Magma Package
    LMS J. Comput. Math. 18 (2015), no. 1, 266–307. [arXiv], [Journal], [MR]
  10. A counter-example to Martino’s conjecture about generic Calogero–Moser families
    Algebr. Represent. Theory 17 (2014), no. 5, 1323–1348. [arXiv], [Journal], [MR]


  • Geometry and representation theory associated to symplectic reflection groups
    Oberwolfach Reports, No. 38/2021 (Workshop “Computational Group Theory”). [Report]



See my data page.